Effect of starch and dairy proteins on the gluten free bread formulation based on quinoa

Abstract

Quinoa flour was used as base for designing new gluten free bread formulation. The proximate composition, physical, functional and thermo-mechanical properties of quinoa flour were first investigated, and the effect of addition of different types of starch (native and modified starch from corn and potato), and of different dairy proteins (whey proteins and sodium caseinate) on the properties of quinoa flour and on bread quality were further studied. The addition of potato starch to quinoa flour caused higher increase of starch gelatinization and breakdown compared to corn starch. Moreover, when corn starch was incorporated a delay in the pasting process was registered. The dairy proteins influenced in different manner the thermo-mechanical properties of dough; whey proteins decreased dough resistance to mechanical constrains, while sodium caseinate increased it. The bread-making test indicated that the addition of corn or potato starch to the quinoa flour allows slight improvement of the specific volume of the breads. Further improvement of the bread specific volume and crumb firmness was observed when combining sodium caseinate with corn starch. In case of the bread samples with modified starch from corn, the incorporation of either whey proteins or sodium caseinate resulted in improved specific volume and crumb firmness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Y. Benavent-Gil, C.M. Rosell, Starches for Food Application (Academic Press, New York, 2019), pp. 333–358

    Google Scholar 

  2. 2.

    X. Xu, Z. Luo, Q. Yang, Z. Xiao, X. Lu, Food Chem. 294, 87–95 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    E. Pereira, C. Encina-Zelada, L. Barros, U. Gonzales-Barron, V. Cadavez, I. Ferreira, Food Chem. 280, 110–140 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    G.M. Turkut, H. Cakmak, S. Kumcuoglu, S. Tavman, J. Cereal Sci. 69, 174–181 (2016)

    Article  Google Scholar 

  5. 5.

    R.M. Tamba-Berehoiu, M. Turtoi, C. Popa, Ann. Univ. Dunarea de Jos Galati Fascicle VI Food Technol. 43, 173–188 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    R. Stikic, D. Glamoclija, M. Demin, B. Vucelic-Radovic, Z. Jovanovic, D. Milojkovic-Opsenica, S.-E. Jacobsen, M. Milovanovic, J. Cereal Sci. 55, 132–138 (2012)

    CAS  Article  Google Scholar 

  7. 7.

    M. Pellegrini, R.L. Gonzalesb, A. Riccia, J. Fontechac, J.F. Lopez, J.A.P. Alvarezb, M.V. Martos, Ind. Crops. Prod. 111, 38–46 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    S.M. Vidueiros, R.N. Curti, L.M. Dyner, M.J. Binaghi, G. Peterson, H.D. Bertero, A.N. Pallaro, J. Cereal Sci. 62, 87–93 (2015)

    Article  Google Scholar 

  9. 9.

    A.C. Nascimento, C. Mota, I. Coelho, S. Gueifao, M. Santos, A.S. Matos, A. Gimenez, M. Lobo, N. Samman, I. Castanheira, Food Chem. 148, 420–426 (2014)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    M.A. Kurek, S. Karp, J. Wyrwisz, Y. Niu, Food Hydrocoll. 85, 321–330 (2018)

    CAS  Article  Google Scholar 

  11. 11.

    ASRO, SR ISO 712:2005, SR 91:2007 and SR ISO 2171:2002 (2008)

  12. 12.

    T.S. Gibson, V.A. Solah, B.V. McCleary, J. Cereal Sci. 25, 111–119 (1997)

    CAS  Article  Google Scholar 

  13. 13.

    AACC Approved Methods of Analysis, 11th Ed. https://doi.org/10.1094/AACCIntMethod--54-60.01/56-11.02/32-40.01/76-31.01

  14. 14.

    Z. Xiao, R. Storms, A. Tsang, Anal Biochem. 351, 146–148 (2006)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    B. Godon, C. Wilhm, Primary Cereal Processing a Comprehensive Sourcebook, 1st edn. (VCH, New York, 1994), pp. 126–130

    Google Scholar 

  16. 16.

    S. Kraithong, S. Lee, S. Rawdkuen, J. Cereal Sci. 79, 259–266 (2018)

    CAS  Article  Google Scholar 

  17. 17.

    W. Abebe, C. Collar, F. Ronda, Carbohydr. Polym. 115, 260–268 (2015)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    A. Dubat, N. Boinot, Mixolab Applications Handbook. Rheological and Enzymes Analyses (Chopin Technology, Villenueve, 2012).

    Google Scholar 

  19. 19.

    M. Villanueva, B. De Lamo, J. Harasym, F. Ronda, Carbohydr. Polym. 201, 374–381 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    H.S. Gujral, B. Sharma, M. Khatri, Food Chem. 240, 1154–1160 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    I. Svec, M. Hruskova, LWT-Food Sci. Technol. 60, 623–629 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    I. Banu, G. Stoenescu, V. Ionescu, I. Aprodu, Cereal Chem. 87, 112–117 (2010)

    Article  CAS  Google Scholar 

  23. 23.

    I. Banu, I. Măcelaru, I. Aprodu, J. Food Process. Preserv. 41, 13112 (2017)

    Article  CAS  Google Scholar 

  24. 24.

    USDA, FoodData Central. https://ndb.nal.usda.gov/fdc-app.html#/?query=quinoa. Accesed 8 Sept 2019

  25. 25.

    G. Li, F. Zhu, Carbohydr. Polym. 181, 851–861 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    J. Ahmed, L. Thomas, Y.A. Arfat, Food Res. Int. 116, 302–311 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    D.N. Lopez, M. Galantea, G. Raimundo, D. Spelzinia, V. Boerisa, Food Res. Int. 116, 419–429 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    C. Collar, A. Angioloni, J. Cereal Sci. 59, 145–154 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    M.E. Steffolani, P. Villacorta, E. Morales-Soriano, R. Repo-Carrasco, A.E. Leon, G.T. Perez, Cereal Chem. 93, 275–281 (2015)

    Article  CAS  Google Scholar 

  30. 30.

    K. Zhang, X. Li, Z. Ma, X. Hu, Food Hydrocol. 93, 19–23 (2019)

    CAS  Article  Google Scholar 

  31. 31.

    M. Kweon, L. Slade, H. Levine, Cereal Chem. 88, 537–552 (2011)

    CAS  Article  Google Scholar 

  32. 32.

    M. Mariotti, M. Lucisano, M.A. Pagani, K.W. Ng Perry, LWT-Food Sci. Technol. 66, 201–210 (2016)

    CAS  Article  Google Scholar 

  33. 33.

    G. Li, F. Zhu, Food Chem. 221, 1560–1568 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    G. Li, S. Wang, F. Zhu, Carbohydr. Polym. 137, 328–338 (2016)

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  35. 35.

    S. Navruz-Varli, N. Sanlier, J. Cereal Sci. 69, 371–376 (2016)

    CAS  Article  Google Scholar 

  36. 36.

    D. Elgeti, S.D. Nordlohne, M. Foste, M. Besl, M.H. Linden, V. Heinz, M. Jekle, T. Becker, J. Cereal Sci. 59, 41–47 (2014)

    CAS  Article  Google Scholar 

  37. 37.

    N. Lindeboom (2005) https://www.collectionscanada.gc.ca/obj/s4/f2/dsk3/SSU/TC-SSU-08152005110823.pdf. Accesed 8 Sept 2019

  38. 38.

    S. Srichuwong, A.S. Curti, R. King, L. Lamothe, H.G. Hernandez, Food Chem. 233, 1–10 (2017)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    M.H.B. Nunes, L.A.M. Ryan, E.K. Arendt, Eur. Food Res. Technol. 229, 31–41 (2009)

    CAS  Article  Google Scholar 

  40. 40.

    M.E. Matos, T. Sanz, C.M. Rosell, Food Hydrocol. 35, 150–158 (2014)

    CAS  Article  Google Scholar 

  41. 41.

    U. Krupa-Kozak, N. Baczek, C.M. Rosell, Nutrients 5, 4503–4520 (2013)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    I. Aprodu, E.A. Badiu, I. Banu, Int. J. Food Eng. 12, 355–363 (2016)

    CAS  Article  Google Scholar 

  43. 43.

    A.C. Bertolini, L.K. Creamer, M. Eppink, M. Boland, J. Agric. Food Chem. 53, 2248–2254 (2005)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    M. Foste, S.D. Nordlohne, D. Elgeti, M.H. Linden, V. Heinz, M. Jekle, T. Becker, Eur. Food Res. Technol. 239, 767–775 (2014)

    Article  CAS  Google Scholar 

  45. 45.

    J. Korus, M. Witczak, R. Ziobro, L. Juszczak, Eur. Food Res. Technol. 240, 1135–1143 (2015)

    CAS  Article  Google Scholar 

  46. 46.

    R. Ziobro, L. Juszczak, M. Witczak, J. Korus, J. Food Sci. Technol. 53, 571–580 (2016)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    C.E. Stathopoulos, Gluten-Free Cereal Products and Beverages (Academic Press, New York, 2008), pp. 217–236

    Google Scholar 

  48. 48.

    M.M. Moore, F. Dal Bello, E.K. Arendt, Eur. Food Res. Technol. 226, 1309–1316 (2008)

    CAS  Article  Google Scholar 

  49. 49.

    K. Khwaldia, S. Banon, C. Perez, S. Desobry, J. Dairy Sci. 87, 2011–2016 (2004)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    I. Buresova, L. Masaríkova, L. Hrivna, S. Kulhanov, D. Bures, LWT-Food Sci. Techol. 68, 659–666 (2016)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank to Mr Vitănescu Maricel for supplying the quinoa seed.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iuliana Banu.

Ethics declarations

Conflict of interest

The authors declare no potential confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 26 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aprodu, I., Banu, I. Effect of starch and dairy proteins on the gluten free bread formulation based on quinoa. Food Measure (2021). https://doi.org/10.1007/s11694-021-00826-9

Download citation

Keywords

  • Quinoa flour
  • Starch
  • Modified starch
  • Dairy proteins
  • Thermo-mechanical properties