Abstract
Quinoa flour was used as base for designing new gluten free bread formulation. The proximate composition, physical, functional and thermo-mechanical properties of quinoa flour were first investigated, and the effect of addition of different types of starch (native and modified starch from corn and potato), and of different dairy proteins (whey proteins and sodium caseinate) on the properties of quinoa flour and on bread quality were further studied. The addition of potato starch to quinoa flour caused higher increase of starch gelatinization and breakdown compared to corn starch. Moreover, when corn starch was incorporated a delay in the pasting process was registered. The dairy proteins influenced in different manner the thermo-mechanical properties of dough; whey proteins decreased dough resistance to mechanical constrains, while sodium caseinate increased it. The bread-making test indicated that the addition of corn or potato starch to the quinoa flour allows slight improvement of the specific volume of the breads. Further improvement of the bread specific volume and crumb firmness was observed when combining sodium caseinate with corn starch. In case of the bread samples with modified starch from corn, the incorporation of either whey proteins or sodium caseinate resulted in improved specific volume and crumb firmness.
This is a preview of subscription content, access via your institution.


References
- 1.
Y. Benavent-Gil, C.M. Rosell, Starches for Food Application (Academic Press, New York, 2019), pp. 333–358
- 2.
X. Xu, Z. Luo, Q. Yang, Z. Xiao, X. Lu, Food Chem. 294, 87–95 (2019)
- 3.
E. Pereira, C. Encina-Zelada, L. Barros, U. Gonzales-Barron, V. Cadavez, I. Ferreira, Food Chem. 280, 110–140 (2019)
- 4.
G.M. Turkut, H. Cakmak, S. Kumcuoglu, S. Tavman, J. Cereal Sci. 69, 174–181 (2016)
- 5.
R.M. Tamba-Berehoiu, M. Turtoi, C. Popa, Ann. Univ. Dunarea de Jos Galati Fascicle VI Food Technol. 43, 173–188 (2019)
- 6.
R. Stikic, D. Glamoclija, M. Demin, B. Vucelic-Radovic, Z. Jovanovic, D. Milojkovic-Opsenica, S.-E. Jacobsen, M. Milovanovic, J. Cereal Sci. 55, 132–138 (2012)
- 7.
M. Pellegrini, R.L. Gonzalesb, A. Riccia, J. Fontechac, J.F. Lopez, J.A.P. Alvarezb, M.V. Martos, Ind. Crops. Prod. 111, 38–46 (2018)
- 8.
S.M. Vidueiros, R.N. Curti, L.M. Dyner, M.J. Binaghi, G. Peterson, H.D. Bertero, A.N. Pallaro, J. Cereal Sci. 62, 87–93 (2015)
- 9.
A.C. Nascimento, C. Mota, I. Coelho, S. Gueifao, M. Santos, A.S. Matos, A. Gimenez, M. Lobo, N. Samman, I. Castanheira, Food Chem. 148, 420–426 (2014)
- 10.
M.A. Kurek, S. Karp, J. Wyrwisz, Y. Niu, Food Hydrocoll. 85, 321–330 (2018)
- 11.
ASRO, SR ISO 712:2005, SR 91:2007 and SR ISO 2171:2002 (2008)
- 12.
T.S. Gibson, V.A. Solah, B.V. McCleary, J. Cereal Sci. 25, 111–119 (1997)
- 13.
AACC Approved Methods of Analysis, 11th Ed. https://doi.org/10.1094/AACCIntMethod--54-60.01/56-11.02/32-40.01/76-31.01
- 14.
Z. Xiao, R. Storms, A. Tsang, Anal Biochem. 351, 146–148 (2006)
- 15.
B. Godon, C. Wilhm, Primary Cereal Processing a Comprehensive Sourcebook, 1st edn. (VCH, New York, 1994), pp. 126–130
- 16.
S. Kraithong, S. Lee, S. Rawdkuen, J. Cereal Sci. 79, 259–266 (2018)
- 17.
W. Abebe, C. Collar, F. Ronda, Carbohydr. Polym. 115, 260–268 (2015)
- 18.
A. Dubat, N. Boinot, Mixolab Applications Handbook. Rheological and Enzymes Analyses (Chopin Technology, Villenueve, 2012).
- 19.
M. Villanueva, B. De Lamo, J. Harasym, F. Ronda, Carbohydr. Polym. 201, 374–381 (2018)
- 20.
H.S. Gujral, B. Sharma, M. Khatri, Food Chem. 240, 1154–1160 (2018)
- 21.
I. Svec, M. Hruskova, LWT-Food Sci. Technol. 60, 623–629 (2015)
- 22.
I. Banu, G. Stoenescu, V. Ionescu, I. Aprodu, Cereal Chem. 87, 112–117 (2010)
- 23.
I. Banu, I. Măcelaru, I. Aprodu, J. Food Process. Preserv. 41, 13112 (2017)
- 24.
USDA, FoodData Central. https://ndb.nal.usda.gov/fdc-app.html#/?query=quinoa. Accesed 8 Sept 2019
- 25.
G. Li, F. Zhu, Carbohydr. Polym. 181, 851–861 (2018)
- 26.
J. Ahmed, L. Thomas, Y.A. Arfat, Food Res. Int. 116, 302–311 (2019)
- 27.
D.N. Lopez, M. Galantea, G. Raimundo, D. Spelzinia, V. Boerisa, Food Res. Int. 116, 419–429 (2019)
- 28.
C. Collar, A. Angioloni, J. Cereal Sci. 59, 145–154 (2014)
- 29.
M.E. Steffolani, P. Villacorta, E. Morales-Soriano, R. Repo-Carrasco, A.E. Leon, G.T. Perez, Cereal Chem. 93, 275–281 (2015)
- 30.
K. Zhang, X. Li, Z. Ma, X. Hu, Food Hydrocol. 93, 19–23 (2019)
- 31.
M. Kweon, L. Slade, H. Levine, Cereal Chem. 88, 537–552 (2011)
- 32.
M. Mariotti, M. Lucisano, M.A. Pagani, K.W. Ng Perry, LWT-Food Sci. Technol. 66, 201–210 (2016)
- 33.
G. Li, F. Zhu, Food Chem. 221, 1560–1568 (2017)
- 34.
G. Li, S. Wang, F. Zhu, Carbohydr. Polym. 137, 328–338 (2016)
- 35.
S. Navruz-Varli, N. Sanlier, J. Cereal Sci. 69, 371–376 (2016)
- 36.
D. Elgeti, S.D. Nordlohne, M. Foste, M. Besl, M.H. Linden, V. Heinz, M. Jekle, T. Becker, J. Cereal Sci. 59, 41–47 (2014)
- 37.
N. Lindeboom (2005) https://www.collectionscanada.gc.ca/obj/s4/f2/dsk3/SSU/TC-SSU-08152005110823.pdf. Accesed 8 Sept 2019
- 38.
S. Srichuwong, A.S. Curti, R. King, L. Lamothe, H.G. Hernandez, Food Chem. 233, 1–10 (2017)
- 39.
M.H.B. Nunes, L.A.M. Ryan, E.K. Arendt, Eur. Food Res. Technol. 229, 31–41 (2009)
- 40.
M.E. Matos, T. Sanz, C.M. Rosell, Food Hydrocol. 35, 150–158 (2014)
- 41.
U. Krupa-Kozak, N. Baczek, C.M. Rosell, Nutrients 5, 4503–4520 (2013)
- 42.
I. Aprodu, E.A. Badiu, I. Banu, Int. J. Food Eng. 12, 355–363 (2016)
- 43.
A.C. Bertolini, L.K. Creamer, M. Eppink, M. Boland, J. Agric. Food Chem. 53, 2248–2254 (2005)
- 44.
M. Foste, S.D. Nordlohne, D. Elgeti, M.H. Linden, V. Heinz, M. Jekle, T. Becker, Eur. Food Res. Technol. 239, 767–775 (2014)
- 45.
J. Korus, M. Witczak, R. Ziobro, L. Juszczak, Eur. Food Res. Technol. 240, 1135–1143 (2015)
- 46.
R. Ziobro, L. Juszczak, M. Witczak, J. Korus, J. Food Sci. Technol. 53, 571–580 (2016)
- 47.
C.E. Stathopoulos, Gluten-Free Cereal Products and Beverages (Academic Press, New York, 2008), pp. 217–236
- 48.
M.M. Moore, F. Dal Bello, E.K. Arendt, Eur. Food Res. Technol. 226, 1309–1316 (2008)
- 49.
K. Khwaldia, S. Banon, C. Perez, S. Desobry, J. Dairy Sci. 87, 2011–2016 (2004)
- 50.
I. Buresova, L. Masaríkova, L. Hrivna, S. Kulhanov, D. Bures, LWT-Food Sci. Techol. 68, 659–666 (2016)
Acknowledgements
The authors thank to Mr Vitănescu Maricel for supplying the quinoa seed.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no potential confict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Aprodu, I., Banu, I. Effect of starch and dairy proteins on the gluten free bread formulation based on quinoa. Food Measure (2021). https://doi.org/10.1007/s11694-021-00826-9
Received:
Accepted:
Published:
Keywords
- Quinoa flour
- Starch
- Modified starch
- Dairy proteins
- Thermo-mechanical properties