Physical, morphological, and storage studies of cinnamon based nanoemulsions developed with Tween 80 and soy lecithin: a comparative study

Abstract

The aim of this study was to characterize the ultrasonically formulated cinnamon oil nanoemulsions and to evaluate the effect of type of surfactants [tween 80 (synthetic) and soy lecithin (natural)] and their concentration (oil:tween 80−1:1, 1:2, 1:3 and 1:4 and oil:soy lecithin-1:1, 1:1.5 and 1:2) on the physiochemical properties and stability of nanoemulsions. The physical parameters including particle size, poly dispersity index (pdI), zeta potential, viscosity and turbidity were assessed. Surfactant concentration was found to be inversely correlated with the average particle size as well as pdI of the nanoemulsions. With an increase in the level of surfactant, turbidity of the nanoemulsions was observed to be less due to the smaller average particle size of the developed nanoemulsions. The formulated nanoemulsions were stored at 25 ºC and 4 ºC and analyzed for turbidity, pH and phase separation upto 90 days. Results revealed that the type and concentration of the surfactant significantly influenced the particle size and stability of nanoemulsions, the least size being attained with tween 80 @1:4 (22.68 nm) and for soy lecithin@ 1:1.5 (75.61 nm). Emulsions formulated with tween were found to be more viscous in comparison to those prepared with soy lecithin. The storage study revealed that prepared tween 80 and soy lecithin based nanoemulsions (stored at 4 ºC and 25 ºC) remained stable for 3 months without any phase separation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    A. Sh, A.B. Abdelrazeik, O.M. Rakha, Int. J. Agri. Inn. Res. 4, 72–75 (2015)

    Google Scholar 

  2. 2.

    A. Sh, A.B. Abdelrazeik, O.M. Rakha, Int. J. Agri. Inn. Res. 4, 72–75 (2015)

    Google Scholar 

  3. 3.

    V.P. Chavda, D. Shah, Nanostructures for Cancer Therapy (Elsevier, Amsterdam, 2017), pp. 653–718

    Google Scholar 

  4. 4.

    T. Tadros, P. Izquierdo, J. Esquena, C. Solans, ‎Adv. Colloid Interface Sci. 108, 303–318 (2004)

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  5. 5.

    E. Acosta, Curr. Opin. Colloid Interface Sci. 14(1), 3–15 (2009)

    CAS  Article  Google Scholar 

  6. 6.

    C. Arancibia, N. Riquelme, R. Zúñiga, S. Matiacevich, Innov. Food Sci. Emerg. Technol. 44, 159–166 (2017)

    CAS  Article  Google Scholar 

  7. 7.

    L. Bai, S. Huan, J. Gu, D.J. McClements, Food Hydrocoll. 61, 703–711 (2016)

    CAS  Article  Google Scholar 

  8. 8.

    H. Schubert, R. Engel, Chem. Eng. Res. Des. 82(9), 1137–1143 (2004)

    CAS  Article  Google Scholar 

  9. 9.

    M.I. Guerra-Rosas, J. Morales-Castro, L.A. Ochoa-Martínez, L. Salvia-Trujillo, O. Martín-Belloso, Food Hydrocoll. 52, 438–446 (2016)

    CAS  Article  Google Scholar 

  10. 10.

    H. Mirhosseini, C.P. Tan, N.S. Hamid, Yusof Colloids Surf. 315, 47–56 (2008)

    CAS  Article  Google Scholar 

  11. 11.

    I. Kralova, J. Sjöblom., J Dispers. Sci. Technol. 30, 1363–1383 (2009)

    CAS  Article  Google Scholar 

  12. 12.

    D.J. McClements, Food Emulsions Principles, Practice and Techniques, 3rd edn. (CRC Press, New York, 2015).

    Google Scholar 

  13. 13.

    V. Raikos, G. Duthie, V. Ranawana, Int. J. Food Sci. Technol. 52, 348–358 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    M. Guttoff, A.H. Saberi, D.J. McClements, Food Chem. 171, 117–122 (2015)

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    V. Klang, C. Valenta, J. Drug Del. Sci. Technol. 21, 55–76 (2011)

    CAS  Article  Google Scholar 

  16. 16.

    S. Mezdour, S. Desplanques, P. Relkin, Food Hydrocoll. 25(4), 613–619 (2011)

    CAS  Article  Google Scholar 

  17. 17.

    J.D. Weete, S. Betageri, G.L. Griffith, J. Am. Oil Chem. Soc. 71, 731–737 (1994)

    CAS  Article  Google Scholar 

  18. 18.

    J.M. Gutiérrez, C. González, A. Maestro, I. Sole, C.M. Pey, J. Nolla, Curr. Opin. Colloid Interface Sci. 13, 245–251 (2008)

    Article  CAS  Google Scholar 

  19. 19.

    T.S.H. Leong, T.J. Wooster, S.E. Kentish, M. Ashokkumar, Ultrason. Sonochem. 16, 721–727 (2009)

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    M. McGuffin, C. Hobbs, R. Upton, A. Goldberg, Botanical Safety Handbook. American Herbal Products Association (CRC Press, Boca Raton, 1997).

    Google Scholar 

  21. 21.

    D.J. McClements, E.A. Decker, J. Weiss, J. Food Sci. 72, R109–R124 (2007)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    I. Odriozola-Serrano, G. Oms-Oliu, O. Martín-Belloso, Front. Nutr. 1, 24 (2014)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Y. Li, J. Zheng, H. Xiao, D.J. McClements, Food Hydrocoll. 27(2), 517–528 (2012)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    T.H. Kabri, E. Arab-Tehrany, N. Belhaj, M. Linder, J. Nanobiotechnol. 9(1), 41 (2011)

    CAS  Article  Google Scholar 

  25. 25.

    F.V. Rodrigues, L.S. Diniz, R.M. Sousa, T.D. Honorato, D.O. Simão, C.R. Araújo, M.P. Siqueira-Moura, Química Nova 41, 756–761 (2018)

    CAS  Google Scholar 

  26. 26.

    S. Karthikeyan, P.A. Jeeva, J. Jerobin, A. Mukherjee, N. Chandrasekaran, Int. J. ChemTech. Res. 4(4), 1566–1570 (2012)

    CAS  Google Scholar 

  27. 27.

    S. Sugumar, A. Mukherjee, N. Chandrasekaran, Asian J. Pharm. 9, 1 (2015)

    Article  Google Scholar 

  28. 28.

    J. Wik, K.K. Bansal, T. Assmuth, A. Rosling, J.M. Rosenholm, Drug Deliv. Transl. 2019, 1–13 (2019)

    Google Scholar 

  29. 29.

    S. Da Costa, M. Basri, N. Shamsudin, H. Basri, J. Chem. (2014). https://doi.org/10.1155/2014/748680

    Article  Google Scholar 

  30. 30.

    F. Hasani, A. Pezeshki, H. Hamishehkar, Int. J. Curr. Microbiol. App. Sci. 4(9), 146–155 (2015)

    Google Scholar 

  31. 31.

    S.T. Yildirim, M.H. Oztop, Y. Soyer, LWT. 84, 122–128 (2017)

    CAS  Article  Google Scholar 

  32. 32.

    Y. Chang, D.J. McClements, J. Agri. Food Chem. 62, 2306–2312 (2014)

    CAS  Article  Google Scholar 

  33. 33.

    J. Komaiko, D.J. McClements, J. Food Eng. 146, 122–128 (2015)

    CAS  Article  Google Scholar 

  34. 34.

    V. Ghosh, S. Saranya, A. Mukherjee, N. Chandrasekaran, J. Nanosci. Nanotechnol. 13(1), 114–122 (2013)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    B. Heurtault, P. Saulnier, B. Pech, J.E. Proust, J.P. Benoit, Biomaterials. 24(23), 4283–4300 (2003)

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    E.D. Manev, R.J. Pugh, Langmuir 7(10), 2253–2260 (1991)

    CAS  Article  Google Scholar 

  37. 37.

    A.M. Chuah, T. Kuroiwa, I. Kobayashi, M. Nakajima, Food Hydrocoll 23(3), 600–610 (2009)

    CAS  Article  Google Scholar 

  38. 38.

    R. Pongsawatmanit, T. Harnsilawat, D.J. McClements, Colloid Surf. 287, 59–67 (2006)

    CAS  Article  Google Scholar 

  39. 39.

    J. Zhang, T. L.Peppard, G.A. Reineccius, Flavour Fragr. J. 30(4), 288–294 (2015)

    Article  CAS  Google Scholar 

  40. 40.

    X. Zhao, Y. Zhu, C. Zhang, J. Lei, Y. Ma, F. Du, RSC Adv. 7(77), 48586–48596 (2017)

    CAS  Article  Google Scholar 

  41. 41.

    D.D. Kumar, B. Mann, R. Pothuraju, R. Sharma, R. Bajaj, Food Funct. 7(1), 417–424 (2016)

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    J. Xue, Q. Zhong, J. Agric. Food Chem. 62, 9900–9907 (2015)

    Article  CAS  Google Scholar 

  43. 43.

    E. Marin, M. Briceño, C. Caballero-George, J. Biotechnol. Biomater. 6(247), 2 (2016)

    Google Scholar 

  44. 44.

    I. Matsaridou, P. Barmpalexis, A. Salis, I. Nikolakakis, AAPS PharmSciTech 13(4), 1319–1330 (2012)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    L. Mao, D. Xu, J. Yang, F. Yuan, Y. Gao, J. Zhao, Food Technol. Biotechnol. 47(3), 336–342 (2009)

    CAS  Google Scholar 

  46. 46.

    P. Becher, Emulsions: Theory and practice, ACS monograph series no. 162. (1965)

  47. 47.

    L. Salvia-Trujillo, A. Rojas-Graü, R. Soliva-Fortuny, O. Martín-Belloso, Food Bioprocess Tech. 6(9), 2439–2446 (2013)

    Article  Google Scholar 

  48. 48.

    D.J. McClements, Curr. Opin. Colloid Interface Sci. 7(5–6), 451–455 (2002)

    CAS  Article  Google Scholar 

  49. 49.

    F. Takatsui, CIE Lab system: computational analysis of photographs. 100-f. (2011)

  50. 50.

    N. Chandrasekaran, Asian J. Pharm. 9(1), 23–28 (2015)

    Article  Google Scholar 

  51. 51.

    J. Weiss, G. Muschiolik, J. Disper. Sci. Technol. 28(5), 703–716 (2007)

    CAS  Article  Google Scholar 

  52. 52.

    J. Zhang, Novel emulsion-based delivery systems (2011)

  53. 53.

    K. Bouchemal, S. Briançon, E. Perrier, H. Fessi, Int. J. Pharm. 280(1–2), 241–251 (2004)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    A. Gasa-Falcon, I. Odriozola-Serrano, G. Oms-Oliu, O. Martín-Belloso, Food Funct. 10(2), 713–722 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    S. Kotta, A.W. Khan, S.H. Ansari, R.K. Sharma, J. Ali, Drug Deliv. 22(4), 455–466 (2015)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    L. Bai, D.J. McClements, J. Colloid Interface Sci. 479, 71–79 (2016)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    S.S. Davis, M. Galloway, J. Pharm. Pharmacol. 33(S1), 99P–99P (1981)

    Article  Google Scholar 

  58. 58.

    J. Komaiko, Optimization of the fabrication, stability, and performance of food grade nanoemulsions with low and high energy methods (2016)

  59. 59.

    R.A. Bernhard, A.G. Marr, J. Food Sci. 25(4), 517–530 (1960)

    CAS  Article  Google Scholar 

  60. 60.

    C. Turek, F.C. Stintzing, Compr. Rev. Food Sci. 12(1), 40–53 (2013)

    CAS  Article  Google Scholar 

  61. 61.

    A. Grumezescu (ed.), Emulsions (Academic Press, New York, 2016)

    Google Scholar 

  62. 62.

    D.J. McClements, J. Rao, Crit. Rev. Food Sci. Nutr. 51(4), 285–330 (2011)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    M.S. Alam, M.S. Ali, M.I. Alam, T. Anwer, M.M.A. Safhi, Trop. J. Pharm. Res. 14(1), 15–20 (2015)

    Article  CAS  Google Scholar 

  64. 64.

    A.M.M.T. Galvão, A.W. de Oliveira, S.V. Araújo, R.A. Carneiro, M.D.S.R. Zambelli, Bastos, Food Packag. Shelf Life 16, 194–203 (2018)

    Article  Google Scholar 

  65. 65.

    J.V. Boyd, C. Parkinson, P. Sherman, J. Colloid Interface Sci. 41(2), 359–370 (1972)

    CAS  Article  Google Scholar 

  66. 66.

    D.S. Bernardi, T.A. Pereira, N.R. Maciel, J. Bortoloto, G.S. Viera, G.C. Oliveira, P.A. Rocha-Filho, J. Nanobiotechnol. 9(1), 44 (2011)

    CAS  Article  Google Scholar 

  67. 67.

    S. Sugumar, S. Singh, A. Mukherjee, N. Chandrasekaran, Appl. Nanosci. 6(1), 113–120 (2016)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are thankful for Department of Food Science and Technology, Punjab Agricultural University for financially supporting our work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gurkirat Kaur.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Singh, P. & Sharma, S. Physical, morphological, and storage studies of cinnamon based nanoemulsions developed with Tween 80 and soy lecithin: a comparative study. Food Measure (2021). https://doi.org/10.1007/s11694-021-00817-w

Download citation

Keywords

  • Cinnamon oil
  • Nanoemulsions
  • Ultrasonic emulsification
  • Tween 80
  • Soy lecithin