A comparative investigation on physicochemical properties, chemical composition, and in vitro antioxidant activities of rice bran oils from different japonica rice (Oryza sativa L.) varieties

A Correction to this article is available

This article has been updated


The main aim of this study is to evaluate and compare the physicochemical properties, chemical composition, and in vitro antioxidant activities of rice bran oil (RBO) from five most popular japonica rice (Oryza sativa L.) varieties planted in China. It was found that the AV and PV of RBOs were 0.45–1.18 mg KOH/g and 0.72–1.73 mmol/kg, individually. The L*, a*, and b* values of RBOs were 24.18–26.70, 1.84–2.54, and 6.35–9.01, respectively. RBOs were rich in linoleic acid (38.63–43.50%), oleic acid (34.23–41.20%), and palmitic acid (16.26–18.93%). POL + SLL (17.44–19.29%), OLL (16.06–17.67%), OOL (13.79–17.79%), and PLL (11.70–14.79%) were the predominant triacylglycerols of RBOs. RBO from different rice varieties contained abundant bioactive constituents such as tocopherols and tocotrienols (948.59–1461.90 mg/kg), squalene (2055.65–4456.79 mg/kg), γ-oryzanol (19391.15–30024.09 mg/kg), phytosterols (10632.74–13948.17 mg/kg), and polyphenols (127.55–358.84 mg/kg). Pigments such as carotenoids and chlorophylls varied from 6.47 to 14.29 mg/kg and 0.79 to 12.96 mg/kg. The DPPH, ABTS, FRAP, and ORAC value were 837.41–1055.64, 1592.38–2106.47, 244.27–557.13, and 170.16–1776.41 µmol TE/100 g, respectively. This work could provide useful information to consumers for choosing suitable vegetable oils based on their health needs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Availability of data and material

The raw/processed data cannot be shared as the data also forms part of an ongoing study.

Change history


  1. 1.

    USDA, Grain: world market and trade.  https://apps.fas.usda.gov/psdonline/circulars/grain.pdf. Accessed 11 Sep (2020)

  2. 2.

    M. Ghosh, Review on recent trends in rice bran oil processing. J. Am. Oil Chem. Soc. 84, 315–324 (2007). https://doi.org/10.1007/s11746-007-1047-3

    CAS  Article  Google Scholar 

  3. 3.

    H. Yoshida, Y. Tomiyama, Y. Mizushina, Lipid components, fatty acids and triacylglycerol molecular species of black and red rices. Food Chem. 123(2), 210–215 (2010). https://doi.org/10.1016/j.foodchem.2010.04.010

    CAS  Article  Google Scholar 

  4. 4.

    R.J. Liu, R.R. Liu, L.K. Shi, Z.Y. Zhang, T. Zhang, M.Y. Lu, M. Chang, Q.Z. Jin, X.G. Wang, Effect of refining process on physicochemical parameters, chemical compositions and in vitro antioxidant activities of rice bran oil. LWT-Food Sci. Technol. 109, 26–32 (2019). https://doi.org/10.1016/j.lwt.2019.03.096

    CAS  Article  Google Scholar 

  5. 5.

    N.H. Choudhury, B.O. Juliano, Effect of amylose content on the lipids of mature rice grain. Phytochemistry 19(7), 1385–1389 (1980). https://doi.org/10.1016/0031-9422(80)80179-8

    CAS  Article  Google Scholar 

  6. 6.

    Y. Liang, Y. Gao, Q. Lin, F.J. Luo, W. Wu, A review of the research progress on the bioactive ingredients and physiological activities of rice bran oil. Eur. Food Res. Technol. 238, 169–176 (2014). https://doi.org/10.1007/s00217-013-2149-9

    CAS  Article  Google Scholar 

  7. 7.

    C.W. Chen, H.H. Cheng, A rice bran oil diet increases LDLreceptor and HMG-CoA reductase mRNA expressions and insulin sensitivity in rats with streptozotocin/nicotinamide-induced type 2 diabetes. J. Nutr. 136(6), 1472–1476 (2006). https://doi.org/10.1093/jn/136.6.1472

    CAS  Article  Google Scholar 

  8. 8.

    T.W. Chou, C.Y. Ma, H.H. Cheng, A rice bran oil diet improves lipid abnormalities and suppress hyperinsulinemic responses in rats with streptozotocin/nicotinamide-induced type 2 diabetes. J. Clin. Biochem. Nutr. 45, 29–36 (2009). https://doi.org/10.3164/jcbn.08-257

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    K. Nagao, M. Sato, M. Takenaka, M. Ando, M. Iwamoto, K. Imaizumi, Feeding unsaponifiable compounds from rice bran oil does not alter hepatic mRNA abundance for cholesterol metabolism-related proteins in hyper-cholesterolemic rats. Biosci. Biotechnol. Biochem. 65(2), 371–377 (2001). https://doi.org/10.1271/bbb.65.371

    CAS  Article  Google Scholar 

  10. 10.

    Z. Xu, N. Hua, J.S. Godber, Antioxidant activity of tocopherols, tocotrienols, and gamma-oryzanol components from rice bran against cholesterol oxidation accelerated by 2,2′-azobis(2-methylpropionamidine) dihydrochloride. J. Agric. Food Chem. 49(4), 2077–2081 (2001). https://doi.org/10.1021/jf0012852

    CAS  Article  Google Scholar 

  11. 11.

    R.H. Hsieh, L.M. Lien, S.H. Lin, C.W. Chen, H.J. Cheng, H.H. Cheng, Alleviation of oxidative damage in multiple tissues in rats with streptozotocin-induced diabetes by rice bran oil supplementation. Ann. NY Acad. Sci. 1042(1), 365–371 (2005). https://doi.org/10.1196/annals.1338.061

    CAS  Article  Google Scholar 

  12. 12.

    R. Kannappan, J. Ravindran, S. Prasad, Gamma-tocotrienol promotes TRAIL-induced apoptosis through reactive oxygen species/extracellular signal-regulated kinase/p53-mediated upregulation of death receptors. Mol. Cancer Ther. 9(8), 2196–2207 (2010). https://doi.org/10.1158/1535-7163.MCT-10-0277

    CAS  Article  Google Scholar 

  13. 13.

    S. Manjula, R. Subramanian, Enriching oryzanol in rice bran oil using membranes. Appl. Biochem. Biotechnol. 151, 629–637 (2008). https://doi.org/10.1007/s12010-008-8273-5

    CAS  Article  Google Scholar 

  14. 14.

    C. Tong, J.S. Bao, Rice Lipids and Rice Bran Oil, 4th edn. (St. Paul, Minnesota, 2019), pp. 131–168

    Google Scholar 

  15. 15.

    A. Szydłowska-Czerniak, A. Łaszewska, Effect of refining process on antioxidant capacity, total phenolics and prooxidants contents in rapeseed oils. LWT-Food Sci. Technol. 64(2), 853–859 (2015). https://doi.org/10.1016/j.lwt.2015.06.069

    CAS  Article  Google Scholar 

  16. 16.

    AOCS, Official Methods and Recommended Practices (American Oil Chemist’s Society, Champaign, 2009).

    Google Scholar 

  17. 17.

    K. Suri, B. Singh, A. Kaur, M.P. Yadav, N. Singh, Impact of infrared and dry air roasting on the oxidative stability, fatty acid composition, Maillard reaction products and other chemical properties of black cumin (Nigella sativa L.) seed oil. Food Chem. 295, 537–547 (2019). https://doi.org/10.1016/j.foodchem.2019.05.140

  18. 18.

    N. Kalogeropoulos, A. Chiou, A. Mylona, M.S. Ioannou, N.K. Andrikopoulos, Recovery and distribution of natural antioxidants (polyphenols, hydroxy pentacyclic terpenic acids and α-tocopherol) during the pan-frying of Mediterranean finfish in virgin olive oil. Food Chem. 100(2), 509–517 (2007). https://doi.org/10.1016/j.foodchem.2005.09.072

    CAS  Article  Google Scholar 

  19. 19.

    S. Seetharamaiah, J.V. Prabhakar, Oryzanol content of Indian rice bran oil and its extraction from soapstock. J. Food Sci. Technol. 23, 270–273 (1986)

    CAS  Google Scholar 

  20. 20.

    E.J. Rogers, S.M. Rice, R.J. Nicolosi, D.R. Carpenter, C.A. McClelland, L.J. Romanczyk, Identification and quantitation of γ-oryzanol components and simultaneous assessment of tocols in rice bran oil. J. Am. Oil Chem. Soc. 70, 301–307 (1993). https://doi.org/10.1007/BF02545312

    CAS  Article  Google Scholar 

  21. 21.

    A. Chiou, N. Kalogeropoulos, F.N. Salta, P. Efstathiou, N.K. Andrikopoulos, Pan-frying of French fries in three different edible oils enriched with olive leaf extract: oxidative stability and fate of microconstituents. LWT-Food Sci. Technol. 42(6), 1090–1097 (2009). https://doi.org/10.1016/j.lwt.2009.01.004

    CAS  Article  Google Scholar 

  22. 22.

    S. Turn, A. Topcu, I. Karabulut, H. Vural, A.A. Hayaloglu, Fatty acid, triacylglycerol, phytosterol, and tocopherol variations in kernel oil of Malatya apricots from Turkey. J. Agric. Food Chem. 55(26), 10787–10794 (2007). https://doi.org/10.1021/jf071801p

    CAS  Article  Google Scholar 

  23. 23.

    M.P.O.B.T. MPOB, Methods: Determination of Carotene Content (Malaysian Palm Oil Board, 2005)

  24. 24.

    E. Sabah, Decolorization of vegetable oils: chlorophyll-a adsorption by acid-activated sepiolite. J. Colloid Interface Sci. 310(1), 1–7 (2007). https://doi.org/10.1016/j.jcis.2007.01.044

    CAS  Article  Google Scholar 

  25. 25.

    A. Szydłowska-Czerniak, K. Trokowski, G. Karlovits, E. Szłyk, Effect of refining processes on antioxidant capacity, total contents of phenolics and carotenoids in palm oil. Food Chem. 129(3), 1187–1192 (2011). https://doi.org/10.1016/j.foodchem.2011.05.101

    CAS  Article  Google Scholar 

  26. 26.

    A. Szydłowska-Czerniak, G. Karlovits, C. Dianoczki, K. Recseg, E. Szłyk, Comparison of two analytical methods for assessing antioxidant capacity of rapeseed and olive oils. J. Am. Oil Chem. Soc. 85(5), 141–149 (2008). https://doi.org/10.1007/s11746-007-1178-6

    CAS  Article  Google Scholar 

  27. 27.

    B. Navajas-Porras, S. Pérez-Burillo, J. Morales-Pérez, J.A. Rufián-Henaresa, S. Pastoriza, Relationship of quality parameters, antioxidant capacity and total phenolic content of EVOO with ripening state and olive variety. Food Chem. 325, 126926 (2020). https://doi.org/10.1016/j.foodchem.2020.126926

    CAS  Article  Google Scholar 

  28. 28.

    A.I. Glushenkova, N.T. Ul’chenko, M. Talipova, K.S. Mukhamedova, N.P. Bekker, I. Tolibaev, Lipids of rice bran. Chem. Nat. Compd. 34, 275–277 (1998). https://doi.org/10.1007/BF02282401

    CAS  Article  Google Scholar 

  29. 29.

    FAO/WHO, Report of the 21st session of the codex alimentarius committed on fats and oils. (European commission, 2009), https://ec.europa.eu/food/sites/food/files/safety/docs/codex_ccfo_21_agenda_en.pdf. Accessed 2 April 2009

  30. 30.

    H. Taira, Fatty acid composition of indica- and japonica-types of rice bran and milled rice. J. Am. Oil Chem. Soc. 66(9), 1326–1329 (1989). https://doi.org/10.1007/BF03022756

    CAS  Article  Google Scholar 

  31. 31.

    F.D. Goffman, S. Pinson, C. Bergman, Genetic diversity for lipid content and fatty acid profile in rice bran. J. Am. Oil Chem. Soc. 80, 485–490 (2003). https://doi.org/10.1007/s11746-003-0725-x

    CAS  Article  Google Scholar 

  32. 32.

    Y. Mano, K. Kawaminami, M. Kojima, M. Ohnishi, S. Ito, Comparative composition of brown rice lipids (lipid fractions) of indica and japonica rices. Biosci. Biotechnol. Biochem. 63(4), 619–626 (1999). https://doi.org/10.1271/bbb.63.619

    CAS  Article  Google Scholar 

  33. 33.

    P. Dugo, O. Favoino, P.Q. Tranchida, G. Dugo, L. Mondello, Off-line coupling of nonaqueous reversed-phase and silver ion high-performance liquid chromatography-mass spectrometry for the characterization of rice oil triacylglycerol positional isomers. J. Chromatogr. A 1041(1–2), 135–142 (2004). https://doi.org/10.1016/j.chroma.2004.04.063

    CAS  Article  Google Scholar 

  34. 34.

    P. Sookwong, K. Nakagawa, K. Murata, Y. Kojima, T. Miyazawa, Quantitation of tocotrienol and tocopherol in various rice brans. J. Agric. Food Chem. 55(2), 461–466 (2007). https://doi.org/10.1021/jf0621572

    CAS  Article  Google Scholar 

  35. 35.

    Z.M. Xu, J.S. Godber, Purification and identification of components of gamma-oryzanol in rice bran oil. J. Agric. Food Chem. 47(4), 2724–2728 (1999). https://doi.org/10.1021/jf981175j

    CAS  Article  Google Scholar 

  36. 36.

    V.R. Pestana, R.C. Zambiazi, C.R.B. Mendonça, M.H. Bruscatto, M.J. Lerma-García, G. Ramis-Ramos, Quality changes and tocopherols and γ-orizanol concentrations in rice bran oil during the refining process. J. Am. Oil Chem. Soc. 85(11), 1013–1019 (2008). https://doi.org/10.1007/s11746-008-1300-4

    CAS  Article  Google Scholar 

  37. 37.

    L.S. Maguire, S.M. O’Sullivan, K. Galvin, T.P. O’Connor, N.M. O’Brien, Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int. J. Food Sci. Nutr. 55(3), 171–178 (2004). https://doi.org/10.1080/09637480410001725175

    CAS  Article  Google Scholar 

  38. 38.

    P. Gao, R.J. Liu, Q.Z. Jin, X.G. Wang, Comparison of solvents for extraction of walnut oils: lipid yield, lipid compositions, minor-component content, and antioxidant capacity. LWT-Food Sci. Technol. 110, 346–352 (2019). https://doi.org/10.1016/j.lwt.2019.04.100

    CAS  Article  Google Scholar 

  39. 39.

    D. Zhang, X.J. Li, Y.P. Cao, C. Wang, Y.L. Xue, Effect of roasting on the chemical components of peanut oil. LWT-Food Sci. Technol. 125, 109249 (2020). https://doi.org/10.1016/j.lwt.2020.109249

    CAS  Article  Google Scholar 

  40. 40.

    J.A. Cayuela, J.F. García, Nondestructive measurement of squalene in olive oil by near infrared spectroscopy. LWT-Food Sci. Technol. 88, 103–108 (2018). https://doi.org/10.1016/j.lwt.2017.09.047

    CAS  Article  Google Scholar 

Download references


Research was supported by the National Key Research and Development Program (Grant No. 2016YFD0400104).

Author information




Writing - original draft preparation: Dong Zhang; Methodology: Xiaoliang Duan; Formal analysis and investigation: Yuanyuan Wang, Bo Shang, Hui Liu, and Yuehua Wang; Writing - review and editing: Hui Sun; Supervision: Hui Sun.

Corresponding author

Correspondence to Hui Sun.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

(DOCX 118 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Duan, X., Wang, Y. et al. A comparative investigation on physicochemical properties, chemical composition, and in vitro antioxidant activities of rice bran oils from different japonica rice (Oryza sativa L.) varieties. Food Measure (2021). https://doi.org/10.1007/s11694-020-00806-5

Download citation


  • Rice bran oil
  • Chemical composition
  • Bioactive constituents
  • In vitro antioxidant activities