Molecular, functional and nutritional properties of chickpea (Cicer arietinum L.) protein isolates prepared by modified solubilization methods

Abstract

Amongst different pulses, chickpea is a cost-effective legume in managing protein malnutrition and achieving food security. Chickpea is rich in protein and body building essential amino acids. Chickpea protein isolates from both desi (K850) and kabuli (P1108) cultivars, were prepared from defatted whole seed flour by sodium hydroxide (K1, P1), after removal of polyphenol (K2, P2) and solubilisation by sodium sulphite (K3, P3). The solubilised protein was isoelectrically precipitated (pH-4.3) by HCl and then freeze-dried after washing with water. Amino acid profiling and SDS-PAGE of K1 and P1 were also performed. Proximate data show that, protein content was highest in P1108 isolates (P3) prepared by sodium sulphite (98.65%) and Water Holding Capacity was also high in P3 (395.54%). Oil Holding capacity was highest in P2 (445.62%) prepared after polyphenol removal. Effect of pH, NaCl concentration and temperature influenced solubility, emulsion activity index (EAI), emulsion stability (ES), foaming capacity (FC) and foaming stability (FS). Protein isolates had better functional properties than flour. Solubility was highest at pH 11 in P1 isolate (79.29%) and for 1% NaCl concentration the solubility in P2 was 30.06% and 77.5% at 50 °C. Both EAI and ES were highest at pH 11. Not much difference was observed in EAI at 0.1% and 1.0% NaCl concentration. FC and FS were high at pH 11 and pH 5, respectively. Kabuli isolates formed gel at 10% concentration, whereas K1 and K2 at 16%. Isolate structure was micrographed by SEM. Kabuli protein isolates had better nutritional and functional properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Food and Agriculture Organization of the United Nations (FAO). Rome, 19 (2019)

  2. 2.

    J. Boye, F. Zare, A. Pletch, Food Res. Int. 43, 414–431 (2010)

    CAS  Article  Google Scholar 

  3. 3.

    Food and Agriculture Organization of United Nations, FAOSTAT statistical database agriculture (2018). http://faostat.fao.org/site/339/default.aspx. Accessed 30 Mar 2020

  4. 4.

    M. Kaur, N. Singh, N.S. Sodhi, J. Food Eng. 69, 511–517 (2005)

    Article  Google Scholar 

  5. 5.

    J.P. Misra, A. Yadav, A. Kumar, R. Yadav, R. Kumar, Res. J Chem. Env. 20(8), 38–43 (2016)

    CAS  Google Scholar 

  6. 6.

    M. Kaur, N. Singh, Food Chem. 91(3), 403–411 (2005)

    CAS  Article  Google Scholar 

  7. 7.

    C. Paredes-Lopez, M. Ordorica-Falomir, R. Olivares-Vazquez, J. Food Sci. 56(3), 726–729 (1991). https://doi.org/10.1111/j.1365-2621.1991.tb05367.x

    CAS  Article  Google Scholar 

  8. 8.

    M. Kaur, N. Singh, Food Chem. 102(1), 366–374 (2007)

    CAS  Article  Google Scholar 

  9. 9.

    T. Zhang, B. Jiang, W. Mu, Z. Wang, Food Hydrocoll. 23, 146–152 (2009)

    Article  CAS  Google Scholar 

  10. 10.

    M.A. Malik, C.S. Saini, Food Hydrocoll. 63, 705–715 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    E. Firatligil-Durmus, O. Evranuz, LWT - Food Sci. Tech. 43, 226–231 (2010)

    CAS  Article  Google Scholar 

  12. 12.

    R. Sanchez-Vioque, A. Clemente, J. Vioque, J. Bautista, F. Millan, Food Chem. 64, 237–243 (1999)

    CAS  Article  Google Scholar 

  13. 13.

    T.D. Alexandrino, R.A. Ferrari, L.M. de Oliveira, R. de Cassia, S.C. Ormenese, M.T.B. Pacheco, LWT - Food Sci. Tech. 84, 426–432 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    AOAC (Association of Official Analytical Chemists, Arlington, VA, 2006)

  15. 15.

    F.W. Sosulski, Cereal Chem. 39, 344–350 (1962)

    Google Scholar 

  16. 16.

    M.J.Y. Lin, E.S. Humbert, F.W. Sosulski, J. Food Sci. 39, 368–370 (1974)

    Article  Google Scholar 

  17. 17.

    O.H.N.G. Lowry, N.J.J. Rosebrough, A.L. Farr, R.J. Randall, J. Biochem. 193, 265–275 (1951)

    CAS  Google Scholar 

  18. 18.

    A. Rickert, L.A. Johnson, P.A. Murphy, J. Food Sci. 69, 303–311 (2004)

    Article  Google Scholar 

  19. 19.

    K. Adebowale, O. Lawal, Food Chem. 83(2), 237–246 (2003)

    CAS  Article  Google Scholar 

  20. 20.

    S.K. Sathe, S.S. Deshpande, D.K. Salunkhe, J. Food Sci. 47, 491–497 (1982)

    CAS  Article  Google Scholar 

  21. 21.

    P.S. Rao, R.K. Bajaj, B. Mann, S. Arora, S.K. Tomar, J. Food Sci. Tech. 53(10), 3834–3843 (2016). https://doi.org/10.1007/s13197-016-2376-8

    CAS  Article  Google Scholar 

  22. 22.

    M. Joshi, B. Adhikari, P. Aldred, J.F. Panozzo, S. Kasapis, Food Chem. 129, 1513–1522 (2011)

    CAS  Article  Google Scholar 

  23. 23.

    G. Boschin, G.M. Scigliuolo, D. Resta, A. Arnoldi, Food Chem. 145, 34–40 (2014)

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    T.G. Kudre, S. Benjakul, H. Kishimura, J. Sci. Food Agric. 93, 2429–2436 (2013)

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    S. Mundi, R.E. Aluko, Food Res. Int. 48, 299–306 (2012)

    CAS  Article  Google Scholar 

  26. 26.

    M. Hadnadev, T. Dapcevic-Hadnadev, A. Lazaridou, T. Moschakis, A.M. Michaelidou, S. Popovic, C.G. Biliaderis, Food Hydrcoll. 79, 526–533 (2018)

    Article  CAS  Google Scholar 

  27. 27.

    S. Sharma, N. Yadav, A. Singh, R. Kumar, Int. Food Res. J. 20(2), 805–810 (2013)

    CAS  Google Scholar 

  28. 28.

    E.O. Keyata, S. Abera, A. Fikre, Food Sci. Qual. Man. 72, 36–42 (2018)

    Google Scholar 

  29. 29.

    K. Jukanti, P.M. Gaur, C.L.L. Gowda, R.N. Chibbar, Br. J Nut. 108, S11–S26 (2012)

    CAS  Article  Google Scholar 

  30. 30.

    Q. Deng, L. Wang, F. Wei, B. Xie, F.H. Huang, W. Huang, J. Shi, Q. Huang, B. Tian, S. Xue, Food Chem. 124, 1458–1465 (2011)

    CAS  Article  Google Scholar 

  31. 31.

    S.K. Sathe, D.K. Salunkhe, J. Food Sci. 46(1), 71–74 (1981)

    Article  Google Scholar 

  32. 32.

    A.K. Arise, Ph.D Thesis, Durban University of Technology, 2016

  33. 33.

    J.E. Kinsella, S. Damodaran, J.B. German, in New Protein Foods: Seed Storage Proteins, ed. by A. M. Altschul, H. L. Wilcke, (Academic Press, New York, 1985), pp. 108–180

    Google Scholar 

  34. 34.

    J. Pedroche, M.M. Yust, H. Lqari, J. Giron-Calle, M. Alaiz, J. Vioque, et al., Food Chem. 88, 337–346 (2004)

    CAS  Article  Google Scholar 

  35. 35.

    S.A. Malomo, R.E.A. Aluko, Food Hydrocoll. 43, 743–752 (2015)

    CAS  Article  Google Scholar 

  36. 36.

    M.B. Barac, M.B. Pesic, S.P. Stanojevic, A.Z. Kostic, V.J. Bivolarevic, Food Sci. Tech. 52(5), 2779–2787 (2015)

    CAS  Google Scholar 

  37. 37.

    M.P. Hojilla-Evangelista, N. Sutivisedsak, R.L. Evangelista, H.N. Cheng, A. Biswas, J. Am. Oil Chem. Soc. 95, 1001–1012 (2018)

    CAS  Article  Google Scholar 

  38. 38.

    C.M. Liu, Q. Peng, J.Z. Zhong, W. Liu, Y.J. Zhong, F. Wang, Mole 23, 393 (2018). https://doi.org/10.3390/molecules23020393

    CAS  Article  Google Scholar 

  39. 39.

    M. Tirgar, P. Silcock, A. Carne, E.J. Birch, Food Chem. 215, 417–424 (2017)

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    C. Karaca, N. Low, M. Nickerson, Food Res. Int. 44(9), 2742–2750 (2011)

    CAS  Article  Google Scholar 

  41. 41.

    L.G. Phillips, D.M. Whitehead, J. Kinsella, Ch. 10, in Structure- Function Properties of Food Proteins, (Academic Press, London, 1994a), pp. 207–232

    Google Scholar 

  42. 42.

    L.G. Phillips, D.M. Whitehead, J. Kinsella, Ch.7, in Structure- Function Properties of Food Proteins, (Academic Press, London, 1994b), pp. 157–165

    Google Scholar 

  43. 43.

    S. Tian, Ph.D. Thesis, School of Life Sciences and Technology, Victoria University of Technology, Australia, 1998

  44. 44.

    S. Damodaran, in Functional Properties, ed. by S. Nakai, H. W. Modler, (VCH, New York, 1996), pp. 167–224

    Google Scholar 

  45. 45.

    D.E. Graham, M.C. Phillips, J. Coll. Interf. Sci. 76, 227–239 (1980)

    CAS  Article  Google Scholar 

  46. 46.

    A.K. Arise, E.O. Amonsou, O.A. Ijabadeniyi, Int. J Food Sci. Tech. 50, 1095–1101 (2015)

    CAS  Article  Google Scholar 

  47. 47.

    R. Toews, N. Wang, Food Res. Int. 52, 445–451 (2013)

    CAS  Article  Google Scholar 

  48. 48.

    G. Meng, C.Y. Ma, Int. J Food Sci. Tech. 37(6), 687–695 (2002)

    CAS  Article  Google Scholar 

  49. 49.

    Z.Z. Oo, T.L. Ko, S.S. Than, Am. Sci. Res. J Eng. Tech. Sci. (ASRJETS) 38(2), 272–280 (2017)

    Google Scholar 

  50. 50.

    M.A. da Silva, V.A. Neves, E.J. Lourenco, Alim. Nutri. 12, 131–149 (2001)

    Google Scholar 

  51. 51.

    A. Clemente, J. Vioque, R. Sánchez-Vioque, J. Pedroche, J. Bautista, F. Millán, J. Sci. Food Agric. 80, 79–84 (2000)

    CAS  Article  Google Scholar 

  52. 52.

    Y. Chang, I. Alli, A. Molina, Food Bioprocess Technol. 5, 618–625 (2009)

    Article  CAS  Google Scholar 

  53. 53.

    V. Raut, S. Kharat, V. Mendhulkar, Int. J. Pure App. Biosci. 3, 156–161 (2015)

    Article  Google Scholar 

  54. 54.

    Joint FAO/WHO/UNU. WHO technical report series no 935 (2007)

  55. 55.

    X. Wang, W. Gao, J. Zhang, et al., Food Res. Int. 43, 567–572 (2010)

    CAS  Article  Google Scholar 

  56. 56.

    A. Mohanthy, A. Mahanty, et al., J. Amino Acids (2014). https://doi.org/10.1155/2014/269797

  57. 57.

    J.P. De Bandt, L. Cynober, J. Nut. 185(1), 308S–313S (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to Food Analysis Research Laboratory, Centre of Food Technology, University of Allahabad for providing necessary equipments for carrying out the present work and Department of Mineralogy and Petrology, University of Allahabad for SEM analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neelam Yadav.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramani, A., Kushwaha, R., Malaviya, R. et al. Molecular, functional and nutritional properties of chickpea (Cicer arietinum L.) protein isolates prepared by modified solubilization methods. Food Measure (2021). https://doi.org/10.1007/s11694-020-00778-6

Download citation

Keywords

  • Chickpea
  • pH
  • NaCl
  • Temperature
  • Solubility
  • Scanning electron microscope (SEM)