A comparison of properties between the citric acid monohydrate and deep eutectic solvent extracted Averrhoa bilimbi pectins

Abstract

Previous study showed that deep eutectic solvent (DES)-extracted pectin exhibited undesirable structural and functional properties. It has to be noted that most of the researchers were seeking the parameters that could increase the extraction yield and neglected the importance of the pectin structures that could ultimately affect the functional properties. Hence, a comparison between the use of DES and less acidic medium (citric acid monohydrate, CAM) in extracting the pectin was conducted. This study demonstrated that the mediums used significantly influenced these aforementioned properties and the optimum extraction parameters. The maximum Averrhoa bilimbi pectin (ABP) yield (9.34%) was obtained at the optimal condition: CAM percentage = 3.71% (w/v), extraction temperature = 80 °C and extraction time = 3.0 h. The result showed that extraction using CAM required longer time (30 min more) than DES and the yield was lower (4.96% less). Apart from that, ABP-CAM was found lower in linearity with higher contribution of RG and branch size of the pectin compared to the ABP-DES which was found to be more linear pectin with a lower contribution of RG and less branch size. Besides that, it was also observed that using CAM as the extraction medium had improved the water holding capacity (6.22%), emulsifying activity (145.59%) and ferric reducing antioxidant power (38.26%) compared to ABP-DES. Overall, it suggested that the extraction medium plays an important role in the extraction of the pectin, structure of the pectin and, hence affects the properties of the extracted pectin.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    M. Sandarani, J. Pharmacognosy Nat. Prod. 3, 1 (2017)

    Google Scholar 

  2. 2.

    A.A. Hossein, Pectin and Galacturonic Acid from Citrus Wastes (M.Sc. diss), University of Boras, Sweden (2009).

  3. 3.

    M.H. Shafie, R. Yusof, C.Y. Gan, Carbohydr. Polym. 216, 303 (2019)

    CAS  Article  Google Scholar 

  4. 4.

    J.S. Yang, T.H. Mu, M.M. Ma, Food Chem. 244, 197 (2018)

    CAS  Article  Google Scholar 

  5. 5.

    Z. Raji, F. Khodaiyan, K. Rezaei, H. Kiani, S.S. Hosseini, Int. J. Biol. Macromol. 98, 709 (2017)

    CAS  Article  Google Scholar 

  6. 6.

    T. Masuko, A. Minami, N. Iwasaki, T. Majima, S.I. Nishimura, Y.C. Lee, Anal. Biochem. 339, 69 (2005)

    CAS  Article  Google Scholar 

  7. 7.

    M.M. Bradford, Anal. Biochem. 72, 248 (1976)

    CAS  Article  Google Scholar 

  8. 8.

    R. María, M. Shirley, C. Xavier, S. Jaime, V. David, S. Rosa, D. Jodie, J. King Saud Univ. Sci. 30, 500 (2018)

    Article  Google Scholar 

  9. 9.

    M.L. Fishman, P.E. Pfeffer, R.A. Barford, L.W. Doner, J. Agric. Food Chem. 32, 372 (1984)

    CAS  Article  Google Scholar 

  10. 10.

    S.Q. Liew, G.C. Ngoh, R. Yusoff, W.H. Teoh, Biocatal. Agric. Biotechnol. 13, 1 (2018)

    Article  Google Scholar 

  11. 11.

    Y. Lv, X. Yang, Y. Zhao, Y. Ruan, Y. Yang, Z. Wang, Food Chem. 112, 742 (2009)

    CAS  Article  Google Scholar 

  12. 12.

    D.P. Leao, B.G. Botelho, L.S. Oliveira, A.S. Franca, LWT-Food Sci. Technol. 87, 575 (2018)

    CAS  Article  Google Scholar 

  13. 13.

    J. Singthong, S.W. Cui, S. Ningsanond, H.D. Goff, Carbohydr. Polym. 58, 391 (2004)

    CAS  Article  Google Scholar 

  14. 14.

    S.K. Du, H. Jiang, X. Yu, J.L. Jane, LWT-Food Sci. Technol. 55, 308 (2014)

    CAS  Article  Google Scholar 

  15. 15.

    H.M.S. Akhtar, M. Abdin, Y.S. Hamed, W. Wang, G. Chen, D. Chen, X. Zeng, LWT, Article ID: 108265 (2019).

  16. 16.

    M.S. Blois, Nature 181, 1199 (1958)

    CAS  Article  Google Scholar 

  17. 17.

    I. F. Benzie, J. Strain, Method Enzymol. 29915 (1999).

  18. 18.

    P.H.F. Pereira, T.Í.S. Oliveira, M.F. Rosa, F.L. Cavalcante, G.K. Moates, N. Wellner, H.M.C. Azeredo, Int. J. Biol. Macromol. 88, 373 (2016)

    CAS  Article  Google Scholar 

  19. 19.

    J. Lu, J. Li, R. Jin, S. Li, J. Yi, J. Huang, Int. J. Biol. Macromol. 131, 323 (2019)

    CAS  Article  Google Scholar 

  20. 20.

    B. M. N., Nguyen, T., Pirak, Cogent Food Agric. 5, Article ID: 1633076 (2019).

  21. 21.

    X. Guo, X. Guo, H. Meng, B. Zhang, S. Yu, Food Hydrocoll. 70, 105 (2017)

    CAS  Article  Google Scholar 

  22. 22.

    M. Yolmeh, S.M. Jafari, Food Bioprocess Tech. 10, 413 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    L. Zhang, M. Wang, Int. J. Biol. Macromol. 95, 675 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    S. Muthusamy, L.P. Manickam, V. Murugan, M. Chendrasekar, A. Pugazhendhi, Int. J. Biol. Macromol. 124, 750 (2018)

    Article  Google Scholar 

  25. 25.

    W. Wang, X. Li, X. Bao, L. Gao, Y. Tao, Int. J. Biol. Macromol. 120, 1420 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    F. Jafari, F. Khodaiyan, H. Kiani, S.S. Hosseini, Carbohydr. Polym. 157, 1315 (2017)

    CAS  Article  Google Scholar 

  27. 27.

    B. Pasandide, F. Khodaiyan, Z.E. Mousavi, S.S. Hosseini, Carbohydr. Polym. 178, 27 (2017)

    CAS  Article  Google Scholar 

  28. 28.

    V. Vieira, M.A. Prieto, L. Barros, J.A.P. Coutinho, I.C.F.R. Ferreira, O. Ferreira, Ind. Crops Prod. 115, 261 (2018)

    CAS  Article  Google Scholar 

  29. 29.

    F. Rubio-Senent, G. Rodríguez-Gutiérrez, A. Lama-Muñoz, J. Fernández-Bolaños, Food Hydrocoll. 43, 311 (2015)

    CAS  Article  Google Scholar 

  30. 30.

    K. Houben, R.P. Jolie, I. Fraeye, A.M. Van Loey, M.E. Hendrickx, Carbohydr. Res. 346, 1105 (2011)

    CAS  Article  Google Scholar 

  31. 31.

    X. Landreau, B. Lanfant, T. Merle, C. Dublanche-Tixier, P. Tristant, Eur. Phys. J. D 66, 1 (2012)

    Article  Google Scholar 

  32. 32.

    E. Dickinson, Food Hydrocoll. 17, 25 (2003)

    CAS  Article  Google Scholar 

  33. 33.

    Y. Wu, W. Cui, N.A.M. Eskin, H.D. Goff, Food Res. Int. 42, 1141 (2009)

    CAS  Article  Google Scholar 

  34. 34.

    M. Kazemi, F. Khodaiyan, M. Labbafi, S. SaeidHosseini, M. Hojjati, Food Chem. 271, 663 (2019)

    CAS  Article  Google Scholar 

  35. 35.

    M. Kazemi, F. Khodaiyan, S.S. Hosseini, Food Chem. 294, 339 (2019)

    CAS  Article  Google Scholar 

  36. 36.

    H.-F. Tan, C.-Y. Gan, Int. J. Biol. Macromol. 85, 487 (2016)

    CAS  Article  Google Scholar 

  37. 37.

    Z. Mzoughi, A. Abdelhamid, C. Rihouey, D. Le Cerf, A. Bouraoui, H. Majdoub, Carbohydr. Polym. 185, 127 (2018)

    CAS  Article  Google Scholar 

  38. 38.

    Z. Mzoughi, G. Souid, R. Timoumi, D. LeCerf, H. Majdoub, Int. J. Biol. Macromol. 136, 332 (2019)

    CAS  Article  Google Scholar 

  39. 39.

    X. Zeng, P. Li, X. Chen, Y. Kang, Y. Xie, X. Li, Y. Zhang, Int. J. Biol. Macromol. 126, 867 (2019)

    CAS  Article  Google Scholar 

  40. 40.

    F.O. Ogutu, T.H. Mu, Ultrason. Sonochem. 38, 726 (2017)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Universiti Sains Malaysia RUI Grant (Grant Number: 1001/CABR/8011045). The authors acknowledged Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia and School of Technology Industry, Universiti Sains Malaysia for its testing facilities. The authors would also like to acknowledge the financial support from USM Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chee-Yuen Gan.

Ethics declarations

Conflict of interest

The authors declare that there are none conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

BBD with the observed responses and predicted values for the yield of ABP-CAM.

Run Variable levels Yield (%)
x1 (% CAM) x2 (temperature) x3 (time) Observed (y1) Predicted (y0)
1 0 + 1 − 1 8.65 7.67
2 + 1 0 − 1 6.42 6.13
3 0 0 0 7.29 6.38
4 + 1 + 1 + 1 10.23 9.74
5 0 0 0 5.99 6.38
6 − 1 0 + 1 8.56 8.20
7 0 − 1 − 1 6.19 6.29
8 0 0 0 6.59 6.38
9 + 1 − 1 0 6.42 6.13
10 − 1 − 1 0 6.78 6.54
11 0 0 0 6.35 6.38
12 − 1 + 1 0 8.06 7.93
13 + 1 + 1 0 6.33 7.93
14 0 0 0 7.05 6.38
15 + 1 0 + 1 7.37 8.20
16 0 − 1 + 1 8.34 8.36
17 − 1 0 − 1 4.96 6.13
  1. *Mean of triplicate determination

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shafie, M.H., Gan, C. A comparison of properties between the citric acid monohydrate and deep eutectic solvent extracted Averrhoa bilimbi pectins. Food Measure (2020). https://doi.org/10.1007/s11694-020-00533-x

Download citation

Keywords

  • Averrhoa bilimbi
  • Bilimbi fruit
  • Citric acid monohydrate
  • Pectin
  • Polysaccharide