High-pressure homogenization-assisted extraction of bioactive compounds from Ruta chalepensis

Abstract

High-pressure homogenization (HPH) was investigated to promote the extraction in water of bioactive molecules from Ruta chalepensis, a medicinal plant widely used in folk medicine. Aqueous suspensions (5% wt) of the pre-milled plant were treated by high-shear mixing (HSM), followed by HPH at 100 MPa for up to 10 passes. A considerable decrease in the size of the suspended particles was observed when applying HPH, which was related to cell deagglomeration and fragmentation. In contrast, no significant changes at the cellular level were observed when only maceration or HSM treatments were applied. Remarkably, HPH treatment did not significantly change the antioxidant activity of the aqueous extracts, but affected their composition: HPLC analysis revealed that HPH treatment significantly increased the content in the aqueous phase of quercetin (+ 452.7%), recovered by fractionation of the aqueous phase with ethyl acetate, and rutin (+ 29.8%), recovered with butanol. In addition, GC/MS analysis of the chloroform fractions obtained from the aqueous extracts revealed that the HPH treatment caused also a significant (p < 0.05) increase in γ-fagarine and chalepin of + 177% and + 1420%, respectively, whereas pteleine, skimmianine, kokusaginine, and arborinine levels were higher in the extracts obtained by maceration than the HPH-treated samples. These findings suggest that the recovery of low water-solubility compounds from R. chalepensis, such as rutin and quercetin, as well as of some alkaloids, such as γ-fagarine and chalepin, significantly improved by HPH-assisted extraction and associated cell disruption effect.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Most of the data not explicitly presented are available in the Supplementary Material. The remaining are available upon request (fdonsi@unisa.it).

References

  1. 1.

    K.N. Prasad, E. Yang, C. Yi, M. Zhao, Y. Jiang, Innov. Food Sci. Emerg. Technol. 10, 155 (2009)

    CAS  Article  Google Scholar 

  2. 2.

    M.V. Shynkaryk, N.I. Lebovka, J.L. Lanoisellé, M. Nonus, C. Bedel-Clotour, E. Vorobiev, J. Food Eng. 92, 189 (2009)

    Article  Google Scholar 

  3. 3.

    F. Patrignani, R. Lanciotti, Front. Microbiol. 7, 1132 (2016)

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    S. Jurić, G. Ferrari, K.P. Velikov, F. Donsì, J. Food Eng. 262, 170 (2019)

    Article  Google Scholar 

  5. 5.

    W. Mustafa, G. Pataro, G. Ferrari, F. Donsì, J. Food Eng. 236, 9 (2018)

    CAS  Article  Google Scholar 

  6. 6.

    N. Coccaro, G. Ferrari, F. Donsì, J. Food Eng. 236, 60 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    J. Xing, Y. Cheng, P. Chen, L. Shan, R. Ruan, D. Li, L. Wang, Powder Technol. 358, 103 (2019)

    CAS  Article  Google Scholar 

  8. 8.

    T. Wang, Y. Zhu, X. Sun, J. Raddatz, Z. Zhou, G. Chen, Food Chem. 152, 37 (2014)

    CAS  Article  PubMed Central  Google Scholar 

  9. 9.

    T. Wang, J. Raddatz, G. Chen, J. Cereal Sci. 58, 380 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    K. Günaydin, S. Savci, Nat. Prod. Res. 19, 203 (2005)

    Article  PubMed Central  Google Scholar 

  11. 11.

    M.R. Loizzo, T. Falco, M. Bonesi, V. Sicari, R. Tundis, M. Bruno, Nat. Prod. Res. 32, 521 (2018)

    CAS  Article  PubMed Central  Google Scholar 

  12. 12.

    L. Iauk, K. Mangano, A. Rapisarda, S. Ragusa, L. Maiolino, R. Musumeci, R. Costanzo, A. Serra, A. Speciale, J. Ethnopharmacol. 90, 267 (2004)

    Article  PubMed Central  Google Scholar 

  13. 13.

    H. Hosseinzadeh, M. Nassiri-Asl, J. Endocrinol. Invest. 37, 783 (2014)

    CAS  Article  PubMed Central  Google Scholar 

  14. 14.

    F. Khan, K. Niaz, F. Maqbool, F.I. Hassan, M. Abdollahi, K.C. Nagulapalli Venkata, S.M. Nabavi, A. Bishayee, Nutrients 8, 529 (2016)

    Article  Google Scholar 

  15. 15.

    H. Arima, H. Ashida, G. Danno, Biosci. Biotechnol. Biochem. 66, 1009 (2002)

    CAS  Article  PubMed Central  Google Scholar 

  16. 16.

    P.G. Waterman, Biochem. Syst. Ecol. 3, 149 (1975)

    CAS  Article  Google Scholar 

  17. 17.

    A.M. Emam, E.S. Swelam, N.Y. Megally, J. Nat. Prod. 2, 10 (2009)

    CAS  Google Scholar 

  18. 18.

    L. Gali, F. Bedjou, South African J. Bot. 120, 163 (2019)

    CAS  Article  Google Scholar 

  19. 19.

    E. Bayer, K. P. Buttler, X. Finkenzeller, J. Grau, Guide de La Flore Méditerranéenne : Caractéristiques, Habitat, Distribution et Particularités de 536 Espèces. Delachaux et Niestlé (2009)

  20. 20.

    Y. Guo, P. Jauregi, Food Chem. 266, 101 (2018)

    CAS  Article  PubMed Central  Google Scholar 

  21. 21.

    O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, J. Biol. Chem. 193, 265 (1951)

    CAS  Google Scholar 

  22. 22.

    K.A.C.C. Taylor, Appl. Biochem. Biotechnol. 53, 207 (1995)

    CAS  Article  Google Scholar 

  23. 23.

    R. Suau, B. Cabezudo, R. Rico, F. Nájera, J.M. López-Romero, Phytochem. Anal. 13, 363 (2002)

    CAS  Article  PubMed Central  Google Scholar 

  24. 24.

    T.S. Leite, P.E.D. Augusto, M. Cristianini, Food Bioprocess Technol. 9, 1070 (2016)

    CAS  Article  Google Scholar 

  25. 25.

    X. Dong, M. Zhao, J. Shi, B. Yang, J. Li, D. Luo, G. Jiang, Y. Jiang, Innov. Food Sci. Emerg. Technol. 12, 478 (2011)

    CAS  Article  Google Scholar 

  26. 26.

    D. Carullo, B.D. Abera, A.A. Casazza, F. Donsì, P. Perego, G. Ferrari, G. Pataro, Algal Res. 31, 60–69 (2018)

    Article  Google Scholar 

  27. 27.

    A. Desrumaux, J. Marcand, Int. J. Food Sci. Technol. 37, 263 (2002)

    CAS  Article  Google Scholar 

  28. 28.

    N.G. Ntalli, F. Manconi, M. Leonti, A. Maxia, P. Caboni, J. Agric. Food Chem. 59, 7098 (2011)

    CAS  Article  PubMed Central  Google Scholar 

  29. 29.

    C. Manach, C. Morand, C. Demigné, O. Texier, F. Régérat, C. Rémésy, FEBS Lett. 409, 12 (1997)

    CAS  Article  PubMed Central  Google Scholar 

  30. 30.

    A. Seidell, Arch. Pharm. (Weinheim). 266, 544c (1928)

    Article  Google Scholar 

  31. 31.

    M.J.O. Rutin, The merck index online database (Whitehouse Station, Hunterdon County, 2013)

    Google Scholar 

  32. 32.

    A. Karadag, B. Ozcelik, Q. Huang, J. Agric. Food Chem. 62, 1852 (2014)

    CAS  Article  PubMed Central  Google Scholar 

  33. 33.

    A. Ulubelen, B. Terem, E. Tuzlaci, K.F. Cheng, Y.C. Kong, Phytochemistry 25, 2692 (1986)

    CAS  Article  Google Scholar 

  34. 34.

    M. Kacem, I. Kacem, G. Simon, A. Ben Mansour, S. Chaabouni, A. Elfeki, M. Bouaziz, Food Biosci. 12, 73 (2015)

    CAS  Article  Google Scholar 

  35. 35.

    M. Wink, Encyclopedia of food science and nutrition (Elsevier, Amsterdam, 2003), pp. 126–134

    Google Scholar 

  36. 36.

    J.-L. Guignard, Biochimie Végétale, 2nd edn. (Dunod, Paris, 2000)

    Google Scholar 

Download references

Acknowledgements

The present work was realized within the framework of the scholarship offered by the Algerian government (Ministry of Higher Education and Scientific Research), which we fully thank. The authors wish to thank Luigi Esposito (University of Salerno) for the particle size analysis of the suspensions and Mariangela Falcone (ProdAlScarl) for the support of the chemical analysis.

Funding

Scholarship from the Algerian government (Ministry of Higher Education and Scientific Research), awarded to Lynda Gali for the experimental activity carried out in Italy.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Lynda Gali and Francesco Donsì. The first draft of the manuscript was written by Lynda Gali and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Francesco Donsì.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gali, L., Bedjou, F., Velikov, K.P. et al. High-pressure homogenization-assisted extraction of bioactive compounds from Ruta chalepensis. Food Measure (2020). https://doi.org/10.1007/s11694-020-00525-x

Download citation

Keywords

  • High-pressure homogenization
  • Ruta chalepensis
  • Extraction
  • Rutin
  • Quercetin
  • Alkaloids