Effect of 4-hexylresorcinol on post-cut browning and quality of minimally processed ‘Fuji’ apple fruits


Demand for minimally processed apples (MPA) is growing, as it is an easy-to-consume food rich in vitamins, minerals, fiber and phenolic compounds that benefit consumer health. However, MPA perishability is a hindrance in meeting this demand due to enzymatic browning of the pulp. To minimize this problem, the effectiveness of different concentrations (0.1%, 0.2% and 0.3%) of 4-hexylresorcinol (4-HR) were tested on MPA (sliced Fuji apples) for up to nine days at 4.0 °C. Distilled water (DW) and l-cysteine chloride (LC) 0.6% (m v− 1), were used as negative control and positive control, respectively. The color, mass loss, pulp firmness, bioactive compounds, enzymatic activity and sensorial characteristics were evaluated. After the evaluations, it was found that the different concentrations of 4-HR exerted undesirable effects on the color variables (L *, a *, ºHue and browning index), because it did not effectively inhibit the browning of the apple pulp. During storage, fruits treated with 4-HR gradually lost weight without affecting quality; had greater firmness and their total phenolic content and antioxidant activity remained superior to controls (DW and LC). Although the activity of the peroxidase and polyphenol oxidase enzymes was decreased, the sensorial analysis revealed that dark spots formed in the endocarp, and also in the mesocarp, impairing the purchase intention of the MPA. Based on these considerations, immersion in 4-hexylresorcinol was considered not suitable for controlling pulp darkening of ‘Fuji’ apples minimally processed during refrigerated storage.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    A.M. Piagentini, M.E. Pirovani, Int. J. Fruit Sci. 17, 102–116 (2017). https://doi.org/10.1080/15538362.2016.1262304

    Article  Google Scholar 

  2. 2.

    C. de O. Raphaelli, E. dos S. Pereira, T.M. Camargo, J. Vinholes, C.V. Rombaldi, M. Vizzotto, L. Nora, Plant Foods Hum. Nutr. 74, 430–435 (2019). https://doi.org/10.1007/s11130-019-00757-3

    CAS  Article  Google Scholar 

  3. 3.

    J. Kschonsek, T. Wolfram, A. Stöckl, V. Böhm, Antioxidants (Basel) 7, 20 (2018). https://doi.org/10.3390/antiox7010020

    CAS  Article  Google Scholar 

  4. 4.

    P. Putnik, D.B. Kovacevic, K. Herceg, S. Roohinejad, R. Greiner, A.E.A. Bekhit, B. Levaj, Food Control 81, 55–64 (2017). https://doi.org/10.1016/j.foodcont.2017.05.026

    CAS  Article  Google Scholar 

  5. 5.

    V.M. Azevedo, M.V. Dias, H.H.D. Elias, K.L. Fukushima, E.K. Silva, J.D.S. Carneiro, N.D.F. Soares, S.V. Borges, Food Res. Int. 107, 306–313 (2018). https://doi.org/10.1016/j.foodres.2018.02.050

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    M.C. Botelho, S.C. Leme, L.C.D. Lima, S.A. Abrahao, H.H. de Silqueira, A.B. Chitarra, Cienc. Agrotechnol. 34, 1312–1319 (2010). https://doi.org/10.1590/s1413-70542010000500033

    CAS  Article  Google Scholar 

  7. 7.

    E.E. Nunes, E.V.D.B. Vilas Boas, A.R.L. Pereira Xisto, J. Biotechnol. Biodivers. 2, 43–50 (2011)

    CAS  Article  Google Scholar 

  8. 8.

    G. Oms-Oliu, R. Soliva-Fortuny, in Future trends fresh-cut fruit and vegetable processing. ed. by O. Martín-Belloso, R. Soliva-Fortuny (CRC Press Taylor & Francis Group, Florida, 2011), pp. 377–387

    Google Scholar 

  9. 9.

    E. Waltz, Nat. Biotechnol. 33, 326–327 (2015). https://doi.org/10.1038/nbt0415-326c

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    A. Maxmen, Nat. News 551, 149–150 (2017). https://doi.org/10.1038/551149a

    CAS  Article  Google Scholar 

  11. 11.

    J. Tazawa, H. Oshino, T. Kon, S. Kasai, T. Kudo, Y. Hatsuyama, T. Fukasawa-Akada, T. Yamamoto, M. Kunihisa, Tree Genet. Genomes 15, 49 (2019). https://doi.org/10.1007/s11295-019-1356-3

    Article  Google Scholar 

  12. 12.

    A. Alberti, T.P.M. dos Santos, A.A.F. Zielinski, C.M.E. dos Santos, C.M. Braga, I.M. Demiate, A. Nogueira, LWT  Food Sci. Technol. 65, 436–443 (2016). https://doi.org/10.1016/j.lwt.2015.08.045

    CAS  Article  Google Scholar 

  13. 13.

    H. Zhang, X. Liu, T. Chen, Y. Ji, K. Shi, L. Wang, X. Zheng, J. Kong, Molecules 23, 521 (2018). https://doi.org/10.3390/molecules23030521

    CAS  Article  PubMed Central  Google Scholar 

  14. 14.

    M.-Z. Lin, W.-M. Chai, C. Ou-Yang, Q. Huang, X.-H. Xu, Y.-Y. Peng, Int. J. Biol. Macromol. 117, 538–545 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.172

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    B.B. Kist, in Anuário brasileiro da maçã 2019. ed. by R.R. Beling (Editora Gazeta Santa Cruz, Santa Cruz Do Sul, 2019), pp. 16–17

    Google Scholar 

  16. 16.

    X.T. Fan, K. Sokorai, J. Phillips, Postharvest Biol. Technol. 143, 43–49 (2018). https://doi.org/10.1016/j.postharvbio.2018.04.009

    CAS  Article  Google Scholar 

  17. 17.

    J.A. Ribeiro, M. Seifert, J. Vinholes, C.V. Rombaldi, L. Nora, R.F.F. Cantillano, Ital. J. Food Sci. 31, 573–590 (2019). https://doi.org/10.14674/ijfs-1451

    CAS  Article  Google Scholar 

  18. 18.

    T.A. Sheikh, M.M. Rahman, A.M. Asiri, H.M. Marwani, M.R. Awual, J. Ind. Eng. Chem. 66, 446–455 (2018). https://doi.org/10.1016/j.jiec.2018.06.012

    CAS  Article  Google Scholar 

  19. 19.

    P. Montero, O. Martinez-Alvarez, M.C. Gomez-Guillen, J. Food Sci. 69, C643–C647 (2004). https://doi.org/10.1111/j.1365-2621.2004.tb09913.x

    CAS  Article  Google Scholar 

  20. 20.

    Y.H. Kim, J.M. Kim, J.S. Lee, S.R. Gang, H.S. Lim, M. Kim, O.H. Lee, Food Chem. 190, 1086–1092 (2016). https://doi.org/10.1016/j.foodchem.2015.06.051

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    D. Sivakumar, E. Arrebola, L. Korsten, Crop Protect. 27, 1208–1214 (2008). https://doi.org/10.1016/j.cropro.2008.03.002

    CAS  Article  Google Scholar 

  22. 22.

    Y.G. Luo, G.V. Barbosa-Cánovas, in Enzymatic browning and its prevention. ed. by C.Y. Lee, J.R. Whitaker (American Chemical Society, Washington, 1995), pp. 240–250

  23. 23.

    J.R. Whitaker, C.Y. Lee, in Enzymatic browning and its prevention. ed. by C.Y. Lee, J.R. Whitaker (ACS Publications, Washington, 1995), pp. 2–7

  24. 24.

    J.A. Guerrero-Beltran, B.G. Swanson, G.V. Barbosa-Canovas, LWT  Food Sci. Technol. 38, 625–630 (2005). https://doi.org/10.1016/j.lwt.2004.08.002

    CAS  Article  Google Scholar 

  25. 25.

    E. Arias, J. Gonzalez, J.M. Peiro, R. Oria, P. Lopez-Buesa, J. Food Sci. 72, C464–C470 (2007). https://doi.org/10.1111/j.1750-3841.2007.00514.x

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    M.A. Rojas-Grau, A. Sobrino-Lopez, M.S. Tapia, O. Martin-Belloso, J. Food Sci. 71, S59–S65 (2006). https://doi.org/10.1111/j.1365-2621.2006.tb12407.x

    CAS  Article  Google Scholar 

  27. 27.

    X. Dong, R.E. Wrolstad, D. Sugar, J. Food Sci. 65, 181–186 (2000). https://doi.org/10.1111/j.1365-2621.2000.tb15976.x

    CAS  Article  Google Scholar 

  28. 28.

    L. Perez-Cabrera, M. Chafer, A. Chiralt, C. Gonzalez-Martinez, LWT Food Sci. Technol. 44, 2273–2280 (2011). https://doi.org/10.1016/j.lwt.2011.04.007

    CAS  Article  Google Scholar 

  29. 29.

    H. Li, K.-W. Cheng, C.-H. Cho, Z. He, M. Wang, J. Agric. Food Chem. 55, 2604–2610 (2007). https://doi.org/10.1021/jf0630466

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    H.A. Eissa, H.H.M. Fadel, G.E. Ibrahim, I.M. Hassan, A. Abd Elrashid, Food Res. Int. 39, 855–863 (2006). https://doi.org/10.1016/j.foodres.2006.04.004

    CAS  Article  Google Scholar 

  31. 31.

    M.B. Moreno, R.F.F. Cantillano, C.V. Rombaldi, R. Manica-Berto, Rev. Bras. Frutic. 38, e532 (2016). https://doi.org/10.1590/0100-29452016532

    Article  Google Scholar 

  32. 32.

    S. Ali, A.S. Khan, A.U. Malik, Postharvest Biol. Technol. 121, 135–142 (2016). https://doi.org/10.1016/j.postharvbio.2016.07.015

    CAS  Article  Google Scholar 

  33. 33.

    C.M. Vasconcelos, E.B. de Oliveira, S.N. Rossi, L.F. Arantes, R. Puschmann, J.B.P. Chaves, Food Bioprocess. Technol. 8, 1982–1994 (2015). https://doi.org/10.1007/s11947-015-1558-0

    CAS  Article  Google Scholar 

  34. 34.

    A.N. Yu, Z.W. Tan, F.S. Wang, Food Chem. 132, 1316–1323 (2012). https://doi.org/10.1016/j.foodchem.2011.11.111

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    I. Travers, A. Jacquet, A. Brisset, C. Maite, J. Sci. Food Agric. 82, 983–989 (2002). https://doi.org/10.1002/jsfa.1145

    CAS  Article  Google Scholar 

  36. 36.

    L.A. de la Rosa, E. Alvarez-Parrilla, E. Moyers-Montoya, M. Villegas-Ochoa, J.F. Ayala-Zavala, J. Hernández, S. Ruiz-Cruz, G.A. González-Aguilar, LWT  Food Sci. Technol. 44, 269–276 (2011). https://doi.org/10.1016/j.lwt.2010.05.030

    CAS  Article  Google Scholar 

  37. 37.

    A. Augusto, T. Simões, R. Pedrosa, S.F.J. Silva, Innov. Food Sci. Emerg. Technol. 33, 589–595 (2016). https://doi.org/10.1016/j.ifset.2015.10.004

    Article  Google Scholar 

  38. 38.

    K.R. Avalos Llano, A.R. Marsellés-Fontanet, O. Martín-Belloso, R. Soliva-Fortuny, Innov. Food Sci. Emerg. Technol. 33, 206–215 (2016). https://doi.org/10.1016/j.ifset.2015.10.021

    CAS  Article  Google Scholar 

  39. 39.

    M.R. Moreira, L. Cassani, O. Martín-Belloso, R. Soliva-Fortuny, J. Food Sci. Technol. 52, 7795–7805 (2015). https://doi.org/10.1007/s13197-015-1907-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    E. Palou, A. Lopez-Malo, G.V. Barbosa-Canovas, J. Welti-Chanes, B.G. Swanson, J. Food Sci. 64, 42–45 (1999). https://doi.org/10.1111/j.1365-2621.1999.tb09857.x

    CAS  Article  Google Scholar 

  41. 41.

    M.E.C. Pereira, A.S.D. Silva, A.S.D.R. Bispo, D.B.D. Santos, D. Santos, V.J.D. Santos, Cienc. Agrotechnol. 30, 1116–1119 (2006). https://doi.org/10.1590/S1413-70542006000600011

    CAS  Article  Google Scholar 

  42. 42.

    A.A.M. Melo, E.Vd.B. Vilas Boas, C.F. Justo, Cienc. Agrotechnol. 33, 228–236 (2009). https://doi.org/10.1590/S1413-70542009000100032

    CAS  Article  Google Scholar 

  43. 43.

    W. Brand-Williams, M.E. Cuvelier, C. Berset, Food Sci. Technol. 28, 25–30 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    CAS  Article  Google Scholar 

  44. 44.

    T. Swain, W.E. Hillis, J. Sci. Food Agric. 10, 63–68 (1959). https://doi.org/10.1002/jsfa.2740100110

    CAS  Article  Google Scholar 

  45. 45.

    M.P. Cano, Bd Ancos, M.C. Matallana, M. Camara, G. Reglero, J. Tabera, Food Chem. 59, 411–419 (1997). https://doi.org/10.1016/s0308-8146(96)00285-3

    CAS  Article  Google Scholar 

  46. 46.

    A.B. Cabezas-Serrano, M.L. Amodio, G. Colelli, Postharvest Biol. Technol. 75, 17–23 (2013). https://doi.org/10.1016/j.postharvbio.2012.07.006

    CAS  Article  Google Scholar 

  47. 47.

    D.M. Ni Eidhin, E. Murphy, D. O’beirne, J. Food Sci. 71, C51–C58 (2006). https://doi.org/10.1111/j.1365-2621.2006.tb12388.x

    CAS  Article  Google Scholar 

  48. 48.

    F.C. Richard-Forget, P.M. Goupy, J.J. Nicolas, J. Agric. Food Chem. 40, 2108–2113 (1992). https://doi.org/10.1021/jf00023a014

    CAS  Article  Google Scholar 

  49. 49.

    J.J.L. Cilliers, V.L. Singleton, J. Agric. Food Chem. 38, 1789–1796 (1990). https://doi.org/10.1021/jf00099a002

    CAS  Article  Google Scholar 

  50. 50.

    M.A. Rojas-Grau, R. Grasa-Guillem, O. Martin-Belloso, J. Food Sci. 72, S36–S43 (2007). https://doi.org/10.1111/j.1750-3841.2006.00232.x

    CAS  Article  Google Scholar 

  51. 51.

    G. Oms-Oliu, I. Aguilo-Aguayo, O. Martin-Belloso, J. Food Sci. 71, S216–S224 (2006). https://doi.org/10.1111/j.1365-2621.2006.tb15644.x

    CAS  Article  Google Scholar 

  52. 52.

    Y. Luo, G.V. BarbosaCanovas, Food Sci. Technol. Int. 3, 195–201 (1997). https://doi.org/10.1177/108201329700300307

    CAS  Article  Google Scholar 

  53. 53.

    C. Ghidelli, M. Mateos, C. Rojas-Argudo, M.B. Perez-Gago, LWT Food Sci. Technol. 51, 462–468 (2013). https://doi.org/10.1016/j.lwt.2012.12.009

    CAS  Article  Google Scholar 

  54. 54.

    A. Monsalve-González, G.V. Barbosa-Cánovas, R.P. Cavalieri, A.J. McEvily, R. Iyengar, J. Food Sci. 58, 797–800 (1993). https://doi.org/10.1111/j.1365-2621.1993.tb09361.x

    Article  Google Scholar 

  55. 55.

    E. Arias, J. Gonzalez, R. Oria, P. Lopez-Buesa, J. Food Sci. 72, C422–C429 (2007). https://doi.org/10.1111/j.1750-3841.2007.00484.x

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    B. Ancos, C. Sánchez-Moreno, L. Plaza, M.P. Cano, in Advances fresh-cut fruits and vegetables processing. ed. by R.S.-F.O. Martín-Belloso, R. (CRC Press, London, New York, 2011), pp. 145–184

    Google Scholar 

  57. 57.

    S. Jafari, M. Hojjati, M. Noshad, J. Food Process. Preserv. 42, e13638 (2018). https://doi.org/10.1111/jfpp.13638

    CAS  Article  Google Scholar 

  58. 58.

    J.D. Ponting, G. Watters, R. Jackson, J. Food   Sci. 37, 434–436 (1972). https://doi.org/10.1111/j.1365-2621.1972.tb02657.x

    CAS  Article  Google Scholar 

  59. 59.

    R.L. Fischer, A.B. Bennett, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 675–703 (1991). https://doi.org/10.1146/annurev.pp.42.060191.003331

    CAS  Article  Google Scholar 

  60. 60.

    E. Aguayo, C. Requejo-Jackman, R. Stanley, A. Woolf, Postharvest Biol. Technol. 57, 52–60 (2010). https://doi.org/10.1016/j.postharvbio.2010.03.001

    CAS  Article  Google Scholar 

  61. 61.

    I. Capotorto, M.L. Amodio, M.T.B. Diaz, M.L.V. de Chiara, G. Colelli, Postharvest Biol. Technol. 137, 21–30 (2018). https://doi.org/10.1016/j.postharvbio.2017.10.014

    CAS  Article  Google Scholar 

  62. 62.

    V.S. Bajwa, M.R. Shukla, S.M. Sherif, S.J. Murch, P.K. Saxena, Postharvest Biol. Technol. 110, 183–189 (2015). https://doi.org/10.1016/j.postharvbio.2015.08.018

    CAS  Article  Google Scholar 

  63. 63.

    Y.X. Li, R.B.H. Wills, J.B. Golding, R. Huque, J. Sci. Food Agric. 95, 945–952 (2015). https://doi.org/10.1002/jsfa.6766

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    J. Zhang, P. Zhao, B. Liu, X. Meng, J. Food Process. Preserv 41, e13062 (2017). https://doi.org/10.1111/jfpp.13062

    CAS  Article  Google Scholar 

  65. 65.

    A. Monsalve-González, G.V. Barbosa-Cánovas, A.J. McEvily, R. Iyengar, Food Technol. 49, 110–118 (1995)

    Google Scholar 

  66. 66.

    H.B. Luo, J. Jiang, L. Jiang, L. Zhang, Z.F. Yu, J. Food Biochem. 36, 309–316 (2012). https://doi.org/10.1111/j.1745-4514.2010.00540.x

    CAS  Article  Google Scholar 

  67. 67.

    N.F. Iyidogan, A. Bayindirli, J. Food Eng. 62, 299–304 (2004). https://doi.org/10.1016/s0260-8774(03)00243-7

    Article  Google Scholar 

  68. 68.

    R.N. Martins, B.H. Mattiuz, L.O. Santos, C.M.A. Morgado, C.F.M. Mattiuz, Rev. Bras. Frutic. 33, 1229–1239 (2011). https://doi.org/10.1590/s0100-29452011000400023

    Article  Google Scholar 

  69. 69.

    H. Young, J.M. Gilbert, S.H. Murray, R.D. Ball, J. Sci. Food Agric. 71, 329–336 (1996)

    CAS  Article  Google Scholar 

  70. 70.

    G. Rux, O.J. Caleb, A. Frohling, W.B. Herppich, P.V. Mahajan, Food Bioprocess. Technol. 10, 2081–2091 (2017). https://doi.org/10.1007/s11947-017-1980-6

    CAS  Article  Google Scholar 

Download references


The study was funded by Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) (Grant No. and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Grant No. CPF:00034094067).

Author information



Corresponding author

Correspondence to Jardel Araujo Ribeiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, J.A., Cantillano, R.F.F., Nora, F.R. et al. Effect of 4-hexylresorcinol on post-cut browning and quality of minimally processed ‘Fuji’ apple fruits. Food Measure (2020). https://doi.org/10.1007/s11694-020-00494-1

Download citation


  • Malus x domestica Borkh
  • Peroxidase
  • Polyphenol oxidase
  • Antioxidant
  • Sensorial quality