Skip to main content
Log in

Optimization of yeast β-glucan and additional water levels, and chilled storage time on characteristics of chilled bread using response surface methodology

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This research aimed to investigate the optimum levels of yeast β-glucan and additional water, and chilled storage time for producing chilled bread using response surface methodology. Yeast β-glucan, a natural hydrocolloid extracted from yeast cell wall, possesses not only functional properties but also human health benefits to be used in food products. A Box–Behnken design with three independent variables (yeast β-glucan, additional water, and chilled storage time) and three levels was used to develop models for the different characteristic responses. Superimposition of contour plots of the significant responses (spread ratio, crumb color L* and b* values, crumb hardness and cohesiveness, and moisture content) was performed to obtain the optimum chilled bread formula. Using the qualities of one-day-on-shelf commercial bread as a reference, the optimum chilled bread contained 0.28% yeast β-glucan and 11.69% additional water (wheat flour basis) with 4 days chilled storage. The optimum chilled bread had superior qualities to the basic formula bread at 4 days of chilled storage. The bread staling during chilling can be retarded by incorporating yeast β-glucan and additional water in the bread formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V. Uygur, M. Şen, Int. J. Agric. For. Life Sci. 2, 2 (2018)

    Google Scholar 

  2. D. Altindal, N. Altindal, Int. J. Agric. For. Life Sci. 2, 2 (2018)

    Google Scholar 

  3. V. Okatan, Folia Hort. 30, 1 (2018)

    Google Scholar 

  4. R.C. Hoseney, Principles of cereal science and technology, 2nd edn. (American Association of Cereal Chemists (AACC), St. Paul, 1994), pp. 229–274

    Google Scholar 

  5. I. Mandala, D. Karabela, A. Kostaropoulos, Food Hydrocolloids. 21, 8 (2007)

    Article  Google Scholar 

  6. A. Mohamed, P. Rayas-Duarte, J. Xu, Food Chem. 107, 1 (2008)

    Article  Google Scholar 

  7. M.L. Martin, K.J. Zeleznak, R.C. Hoseney, Cereal Chem. 68, 5 (1991)

    Google Scholar 

  8. C.M. Rosell, J.A. Rojas, C.B. de Barber, Food Hydrocolloids. 15, 1 (2001)

    Article  Google Scholar 

  9. M. Gómez, F. Ronda, C.A. Blanco, P.A. Caballero, A. Apesteguía, Eur. Food Res.Technol. 216, 1 (2003)

    Article  Google Scholar 

  10. S. Thammakiti, M. Suphantharika, T. Phaesuwan, C. Verduyn, Int. J. Food Sci. Technol. 39, 1 (2004)

    Article  Google Scholar 

  11. V. Petravić-Tominac, V. Zechner-Krpan, K. Berković, P. Galović, Z. Herceg, S. Srečec, I. Špoljarić, Food Technol. Biotechnol. 49, 1 (2011)

    Google Scholar 

  12. R. Banchathanakij, M. Suphantharika, Food Chem. 114, 1 (2009)

    Article  Google Scholar 

  13. EFSA. (2011), https://www.efsa.europa.eu/en/efsajournal/pub/2137

  14. Food, D. Administration, Agency Response Letter GRAS Notice No. GRN 000239. (U.S. Food and Drug Administration, 2008), https://wayback.archive-it.org/7993/20170607015213/https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/UCM267500.pdf. Accessed 24 February 2019

  15. S. Worrasinchai, M. Suphantharika, S. Pinjai, P. Jamnong, Food Hydrocolloids. 20, 1 (2006)

    Article  Google Scholar 

  16. R. Santipanichwong, M. Suphantharika, Food Hydrocolloids. 21, 4 (2007)

    Article  Google Scholar 

  17. V. Sae-kang, M. Suphantharika, Carbohydr. Polym. 65, 3 (2006)

    Article  Google Scholar 

  18. S. Satrapai, M. Suphantharika, Carbohydr. Polym. 67, 4 (2007)

    Article  Google Scholar 

  19. L. Wang, R.A. Miller, R.C. Hoseney, Cereal Chem. 75, 2 (1998)

    Article  Google Scholar 

  20. L. Flander, M. Salmenkallio-Marttila, T. Suortti, K. Autio, LWT – Food Sci. Technol. 40, 5 (2007)

    Article  Google Scholar 

  21. A. Skendi, C.G. Biliaderis, M. Papageorgiou, M.S. Izydorczyk, Food Chem. 119, 3 (2010)

    Article  Google Scholar 

  22. M. Kinner, S. Nitschko, J. Sommeregger, A. Petrasch, G. Linsberger-Martin, H. Grausgruber et al., J. Cereal Sci. 53, 2 (2011)

    Article  Google Scholar 

  23. P. Kittisuban, P. Ritthiruangdej, M. Suphantharika, LWT – Food Sci. Technol. 57, 2 (2014)

    Article  Google Scholar 

  24. R. Wongsagonsup, P. Kittisuban, A. Yaowalak, M. Suphantharika, Int. Food Res. J. 22, 2 (2015)

    Google Scholar 

  25. D. Baş, İH. Boyacι, J. Food Eng. 78, 3 (2007)

    Google Scholar 

  26. R. Wang, W. Zhou, H.H. Yu, W.F. Chow, J. Sci. Food Agric. 86, 6 (2006)

    Article  Google Scholar 

  27. A.A.C.C. International, Approved Methods of Analysis, 10th edn. (AACC International, St. Paul, 2000)

    Google Scholar 

  28. S.Y. Sim, A.A. Noor Aziah, L.H. Cheng, Food Hydrocolloids. 25, 5 (2011)

    Article  Google Scholar 

  29. S.R. Chevallier, R. Zúñiga, A. Le-Bail, Food Bioprocess Tech. 5, 2 (2012)

    Article  Google Scholar 

  30. T.R. Dapčević Hadnađev, L.P. Dokić, M.S. Hadnađev, M.M. Pojić, S.M. Rakita, A.M. Torbica, Food Feed Res. 40, 2 (2013)

    Google Scholar 

  31. D. Sabanis, C. Tzia, Food Bioprocess Tech. 2, 1 (2009)

    Article  Google Scholar 

  32. A. León, E. Durán, C.B. de Barber, Z. Lebensm. −Unters. Forsch. 204, 4 (1997)

    Google Scholar 

  33. C.G. Biliaderis, M.S. Izydorczyk, O. Rattan, Food Chem. 53, 2 (1995)

    Article  Google Scholar 

  34. E. Armero, C. Collar, Z. Lebensm. −Unters. Forsch. 204, 2 (1997)

    Google Scholar 

  35. M.E. Matos, C.M. Rosell, Eur. Food Res. Technol. 235, 1 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program for financial support (Grant no. PHD/0205/2552). This research is also partially supported by the Center of Excellence on Agricultural Biotechnology, Science and Technology Postgraduate Education and Research Development Office, Office of Higher Education Commission, Ministry of Education (AG-BIO/PERDO-CHE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Suphantharika.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suwannarong, S., Wongsagonsup, R., Luangpituksa, P. et al. Optimization of yeast β-glucan and additional water levels, and chilled storage time on characteristics of chilled bread using response surface methodology. Food Measure 13, 1683–1694 (2019). https://doi.org/10.1007/s11694-019-00085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00085-9

Keywords

Navigation