Skip to main content
Log in

Response surface methodology for optimization of gluten-free bread made with unripe banana flour

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Gluten-free products have some texture drawbacks compared with gluten products. The texture of gluten-free products is improved with the addition of hydrocolloids and pregelatinized starches. The effects of hydroxypropyl methylcellulose (HPMC), pregelatinized unripe banana flour (UBF-P) and water on the quality of gluten-free bread were studied. A composite central design and response surface methodology were used. The volume, specific volume, weight, and hardness were analyzed, and image analysis of the crumb was performed. The results showed that the volume and specific volume increased with the addition of HPMC and UBF-P, while the hardness decreased. The addition of UBF-P and water increased the number and size of alveoli and affected the distribution of alveoli in crumbs. The distribution and size of the alveoli affected the physical characteristics and texture of the bread. Unripe banana flour can be used as an alternative ingredient to prepare gluten-free bread that has good quality characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Schuppan, M.D. Dennis, C.P. Kelly, Nutr. Clin. Care 8(2), 54–69 (2005)

    PubMed  Google Scholar 

  2. E. Gallagher, T.R. Gormley, E.K. Arendt, Trends Food Sci. Technol. 15, 143–152 (2004). https://doi.org/10.1016/j.tifs.2003.09.012

    Article  CAS  Google Scholar 

  3. S.A. Mir, M.A. Shah, H.R. Naik, I.A. Zargar, Trends Food Sci. Technol. 51, 49–57 (2016). https://doi.org/10.1016/j.tifs.2016.03.005

    Article  CAS  Google Scholar 

  4. A. Houben, Höchstötter, T. Becker, Eur. Food Res. Technol. 235, 195–208 (2012)

    Article  CAS  Google Scholar 

  5. H. Andersson, C. Öhgren, D. Johansson, M. Kniola, M. Stading, Food Hydrocoll. 25, 1587–1595 (2011). https://doi.org/10.1016/j.foodhyd.2010.11.028

    Article  CAS  Google Scholar 

  6. D. Sabanis, C. Tzia, Food Sci. Technol. Int. 17(4), 279–291 (2011). https://doi.org/10.1177/1082013210382350

    Article  CAS  PubMed  Google Scholar 

  7. F. Ronda, S. Pérez-Quirce, A. Angioloni, C. Collar, Food Hydrocoll. 32, 252–262 (2013). https://doi.org/10.1016/j.foodhyd.2013.01.014

    Article  CAS  Google Scholar 

  8. S. Pérez-Quirce, C. Collar, F. Ronda, Int. J. Food Sci. Technol. 49, 1375–1382 (2014). https://doi.org/10.1111/ijfs.12439

    Article  CAS  Google Scholar 

  9. F. Cabrera-Chávez, A.M. Calderón, A.R. De La Barca, A. Islas-Rubio, M. Marti, M.A. Marengo, F. Pagani, Bonomi, S. Iametti, LWT-Food Sci. Technol. 47(2), 421–426 (2012). https://doi.org/10.1016/j.lwt.2012.01.040

    Article  CAS  Google Scholar 

  10. M. Torbica, Hadnadev, T.D. Hadnadev, Food Res. Int. 48(1), 277–283 (2012). https://doi.org/10.1016/j.foodres.2012.05.001

    Article  Google Scholar 

  11. D. Elgeti, S.D. Nordlohne, M. Föste, M. Besl, M.H. Linden, V. Heinz, M. Jekle, T. Becker, J. Cereal Sci. 59, 41–47 (2014). https://doi.org/10.1016/j.jcs.2013.10.010

    Article  CAS  Google Scholar 

  12. N.M. Machado-Alencar, C.J. Steel, I.D. Alvim, E.C. De Morais, H.M. Andre-Bolini, LWT-Food Sci. Technol. 62(2), 1011–1018 (2015). https://doi.org/10.1016/j.lwt.2015.02.029

    Article  CAS  Google Scholar 

  13. R.P. Zandonadi, B.R.B. Assunção, L. Gandolfi, G.J. Selva, M.F. Martins, R. Pratesi, J. Acad. Nutr. Diet 112(7), 1068–1072 (2012). https://doi.org/10.1016/j.jand.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  14. L. Padalino, M. Mastromatteo, L. Lecce, F. Cozzolino, M.A. Del Nobile, J. Cereal Sci. 57, 333–342 (2013). https://doi.org/10.1016/j.jcs.2012.12.010

    Article  CAS  Google Scholar 

  15. G. Giuberti, A. Gallo, C. Cerioli, P. Fortunati, F. Masoero, Food Chem. 175, 43–49 (2015). https://doi.org/10.1016/j.foodchem.2014.11.127

    Article  CAS  PubMed  Google Scholar 

  16. D. Lazaridou, M. Duta, N. Papageorgiou, Belc, C.G. Biliaderis, J. Food Eng. 79(3), 1033–1047 (2007). https://doi.org/10.1016/j.jfoodeng.2006.03.032

    Article  CAS  Google Scholar 

  17. I. Kim, W. Choi, Shin, Y. Kim, LWT-Food Sci Technol. 62(1), 620–627 (2015). https://doi.org/10.1016/j.lwt.2014.03.039

    Article  CAS  Google Scholar 

  18. C. Onyango, G. Unbehend, M.G. Lindhaue, Food Res. Int. 42, 949–955 (2009). https://doi.org/10.1016/j.foodres.2009.04.011

    Article  CAS  Google Scholar 

  19. E. Juárez-García, E. Agama-Acevedo, S.G. Sayago-Ayerdi, S.L. Rodríguez-Ambriz, L.A. Bello-Pérez, Plant Foods Hum. Nutr. 61, 131–137 (2006). https://doi.org/10.1007/s11130-006-0020-x

    Article  CAS  PubMed  Google Scholar 

  20. P. Zhang, B.R. Hamaker, Carbohydr. Polym. 87, 1552–1558 (2012). https://doi.org/10.1016/j.carbpol.2011.09.053

    Article  CAS  Google Scholar 

  21. E. Fuentes-Zaragoza, M.J. Riquelme-Navarrete, E. Sánchez-Zapata, J.A. Pérez-Álvarez, Food Res. Int. 43(4), 931–942 (2010). https://doi.org/10.1016/j.foodres.2010.02.004

    Article  CAS  Google Scholar 

  22. W. Tiboonbun, M. Sungsri-in, A. Moongngarm, Res. Rev. J. Eng. Technol. 81, 608–611 (2011)

    Google Scholar 

  23. C.E. Chinma, B.D. Igbabul, O.O. Omotayo, Am. J. Food Technol. 7(7), 398–408 (2012). https://doi.org/10.3923/ajft.2012.398.408

    Article  CAS  Google Scholar 

  24. C. Sarawong, Z.R. Gutiérrez, E. Berghofer, R. Schoenlechner, Int. J. Food Sci. Technol. 49(8), 1825–1833 (2014). https://doi.org/10.1111/ijfs.12491

    Article  CAS  Google Scholar 

  25. C. Sarawong, R. Schoenlechner, K. Sekiguchi, E. Berghofer, P.K.W. Ng, Food Chem. 143, 33–39 (2014). https://doi.org/10.1016/j.foodchem.2013.07.081

    Article  CAS  PubMed  Google Scholar 

  26. P.C. Flores-Silva, S.L. Rodriguez-Ambriz, L.A. Bello-Pérez, J. Food Sci. 80(5), C961–C966 (2015). https://doi.org/10.1111/1750-3841.12865

    Article  CAS  PubMed  Google Scholar 

  27. Mondal, A.K. Datta, J. Food Eng. 86, 465–474 (2008). https://doi.org/10.1016/j.jfoodeng.2007.11.014

    Article  Google Scholar 

  28. R. Ziobro, L. Juszczak, M. Witczek, J. Korus, J. Food Sci. Technol. 53(1), 571–580 (2015). https://doi.org/10.1007/s13197-015-2043-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S. Farris, L. Piergiovanni, J. Food Process Eng. 32, 64–87 (2009). https://doi.org/10.1111/j.1745-4530.2007.00203.x

    Article  Google Scholar 

  30. b Demirkesen, G. Mert, Sumnu, S. Sahin, J. Food Eng. 96, 295–303 (2010). https://doi.org/10.1016/j.jfoodeng.2009.08.004

    Article  CAS  Google Scholar 

  31. American Association of Cereal Chemists (AACC), Approved Methods of the American Association of Cereal Chemists, 10th edn. (AACC, St. Paul, 2000)

    Google Scholar 

  32. X. Liu, T. Mu, H. Sun, M. Zhang, J. Chen, M.L. Fauconnier, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2017.07.047

    Article  PubMed  Google Scholar 

  33. M.E. Sánchez-Pardo, A. Ortiz-Moreno, R. Mora-Escobedo, J.J. Chanona-Pérez, H. Necoechea-Mondragón, LWT-Food Sci. Technol. 41, 620–627 (2008). https://doi.org/10.1016/j.lwt.2007.05.003

    Article  CAS  Google Scholar 

  34. C.M. Rosell, in: Flour and Breads and their Fortification in Health and Disease Prevention, ed. By V.R. Preedy, R.R. Watson, V.B. Patel, (Academic Press, New York, 2011), pp. 3–14 https://doi.org/10.1016/B978-0-12-380886-8.10001-7

    Book  Google Scholar 

  35. R. Crockett, P. Le, Y. Vodovotz, J. Food Sci., 76(3), E274-E282 (2011) https://doi.org/10.1111/j.1750-3841.2011.02088.x

    Article  CAS  Google Scholar 

  36. M. Föste, M. Jekle, T. Becker, Carbohydr. Polym. 174, 1018–1025 (2017). https://doi.org/10.1016/j.carbpol.2017.06.068

    Article  CAS  PubMed  Google Scholar 

  37. E. Agama-Acevedo, M.C. Nuñez-Santiago, J. Alvarez-Ramirez, L.A. Bello-Pérez, Carbohydr. Polym. 124, 17–24 (2015). https://doi.org/10.1016/j.carbpol.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  38. B.Y.T. Horigome, E. saraguchi & C. Kishimoto, Br. J. Nutr. 68, 231–244 (1992). https://doi.org/10.1079/BJN19920080

    Article  CAS  PubMed  Google Scholar 

  39. M. Ovando-Martinez, S. Sáyogo-Ayerdi, E. Agama-Acevedo, I. Goñi, L.A. Bello-Pérez, Food Chem., 76(6), R1067-R1075 (2009) https://doi.org/10.1016/j.foodchem.2008.07.035

    Article  CAS  Google Scholar 

  40. C. Sarawong, Z.R. Gutiérrez, E. Berghofer, R. Schoenlechner, K., Int. J. Food Sci. Technol. 49(8), 1825–1833 (2014). https://doi.org/10.1111/ijfs.12491

    Article  CAS  Google Scholar 

  41. G. Demirkesen, Sumnu, S. Sahin, Food Bioproc. Techol. 6(7), 1749–1758 (2013). https://doi.org/10.1007/s11947-012-0850-5

    Article  CAS  Google Scholar 

  42. M. Mariotti, M.A. Pagani, M. Lucisano, Food Hydrocoll. 30, 393–400 (2013). https://doi.org/10.1016/j.foodhyd.2012.07.005

    Article  CAS  Google Scholar 

  43. Y. Phimolsiripol, A. Mukprasirt, R. Schoenlechner, J. Cereal Sci. 5, 389–395 (2012). https://doi.org/10.1016/j.jcs.2012.06.001

    Article  CAS  Google Scholar 

  44. J.J. Pérez-Nieto, R.R. Chanona-Pérez, G.F. Farrera-Rebollo, L. Gutiérrez-López, Alamilla-Beltrán, G. Calderón-Domínguez, LWT-Food Sci. Technol. 43(3), 535–543 (2010). https://doi.org/10.1016/j.lwt.2009.09.023

    Article  CAS  Google Scholar 

  45. C. Ferrero, Food Hydrocoll. 68, 15–22 (2017). https://doi.org/10.1016/j.foodhyd.2016.11.044

    Article  CAS  Google Scholar 

  46. Y. Tebben, Shen, Y. Li, Trends Food Sci. Technol. 81, 10–14 (2018). https://doi.org/10.1016/j.tifs.2018.08.015

    Article  CAS  Google Scholar 

  47. E. Armero, C. Collar, Food Sci. Technol. Int. 2(5), 323–333 (1996). https://doi.org/10.1177/108201329600200506

    Article  CAS  Google Scholar 

  48. A. Arslan, M.R. Rakha, Khan, X. Zou, Food Measure 11(4), 1959–1968 (2017). https://doi.org/10.1007/s11694-017-9578-2

    Article  Google Scholar 

  49. S.O. Ozkoc, N. Seyhun, Food Bioprocess Technol. 8, 2500–2506 (2015). https://doi.org/10.1007/s11947-015-1615-8

    Article  CAS  Google Scholar 

  50. M. Martínez, L. Román, M. Gómez, Food Chem. 239, 295–303 (2018). https://doi.org/10.1016/j.foodchem.2017.06.122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support granted by Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional (SIP-IPN), del Instituto Politécnico Nacional (COFAA-IPN), Programa de Estímulos al Desempeño de los Investigadores del Instituto Politécnico Nacional (EDI-IPN) and Beca de Estímulo Institucional de Formación de Investigadores del Instituto Politécnico Nacional (BEIFI-IPN). MAHA is grateful for the scholarship granted by Consejo Nacional de Ciencia y Tecnología de México (CONACyT-Mexico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Osorio-Díaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Aguirre, M.A., Islas-Hernández, J.J., Sánchez-Pardo, M.E. et al. Response surface methodology for optimization of gluten-free bread made with unripe banana flour. Food Measure 13, 1652–1660 (2019). https://doi.org/10.1007/s11694-019-00082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00082-y

Keywords

Navigation