Advertisement

Journal of Food Measurement and Characterization

, Volume 12, Issue 3, pp 2158–2163 | Cite as

Phytochemical accumulation of anthocyanin rich mulberry (Morus laevigata) during ripening

  • Onur Saracoglu
Original Paper
  • 276 Downloads

Abstract

The goal of the study was to determine the differences in phytochemical components of mulberry (Morus laevigata) fruits at different stages of ripeness. In this study, the highest total phenolic (1310.3 µg gallic acid equivalents/g fresh weight) and anthocyanin (925.6 µg cy-3-glu/g fresh weight) contents and antioxidant capacity (12.8 µmol trolox equivalents/g fresh weight) were observed in black ripening stage. The major sugars in mulberry fruits were fructose (17.55 g/kg). It was determined that the main organic acid in mulberry was citric acid ranging from 8.97 g/kg (pink stage) to 5.80 g/kg (black ripening stage), followed by malic acid ranging from 0.31 (pink ripening stage) to 5.67 (black ripening stage) g/kg. Looking at the contents of phenolic compounds, chlorogenic acid (average 27.48 mg/100 g) was found to be the predominant phenolic compound. Current study shows that M. laevigata fruits are a good source of healthy phytochemicals.

Keywords

Bioactive compounds Morus laevigata Mullberry Phenolics 

References

  1. 1.
    S. Kafkas, M. Özgen, Y. Doğan, B. Özcan, S. Ercişli, S. Serçe, J. Am. Soc. Hortic. Sci. 133, 593–597 (2008)Google Scholar
  2. 2.
    S. Ercisli, E. Orhan, Food Chem. 103, 1380–1384 (2007)CrossRefGoogle Scholar
  3. 3.
    S. Ercisli, Genet. Resour. Crop Eval. 51, 419–435 (2004)CrossRefGoogle Scholar
  4. 4.
    M.S. Zafar, F. Muhammad, I. Javed, M. Akhtar, T. Khaliq, B. Aslam, H. Zafar, Int. J. Agric. Biol. 15, 612–620 (2013)Google Scholar
  5. 5.
    M. Gundogdu, I. Canan, M.K. Gecer, T. Kan, S. Ercisli, Folia Hortic. 29, 251–262 (2017)CrossRefGoogle Scholar
  6. 6.
    F. Hussain, Z. Rana, H. Shafique, A. Malik, Z. Hussain, Asian Pac. J. Trop. Biomed. 7, 950–956 (2017)CrossRefGoogle Scholar
  7. 7.
    A.A. Memon, N. Memon, D.L. Luthria, M.I. Bhanger, A.A. Pitafi, Pol. J. Food Nutr. Sci. 60, 25–32 (2010)Google Scholar
  8. 8.
    T. Mahmood, F. Anwar, M. Abbas, M.C. Boyce, N. Saari, Int. J. Mol. Sci. 13, 1380–1392 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    S. Chauhan, S.C. Verma, R.V. Kumar, Asian J. Chem. 25, 8010–8014 (2013)CrossRefGoogle Scholar
  10. 10.
    M. Wang, B.W. Yu, M.H. Yu, L.X. Gao, J.Y. Li, H.Y. Wang, J. Li, A.J. Hou, Chem. Biodivers. 12, 937–945 (2015)CrossRefPubMedGoogle Scholar
  11. 11.
    M. Serrano, F. Guillen, D. Martinez-Romero, S. Castillo, D. Valero, J. Agric. Food Chem. 53, 2741–2745 (2005)CrossRefPubMedGoogle Scholar
  12. 12.
    S. Skrovankova, D. Sumczynski, J. Mlcek, T. Jurikova, J. Sochor, Int. J. Mol. Sci. 16, 24673–24706 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    S.R. Lee, J.Y. Park, J.S. Yu, S.O. Lee, J.Y. Ryu, S.Z. Choi, K.S. Kang, N. Yamabe, K.H. Kim, J. Agric. Food Chem. 64, 3804–3809 (2016)CrossRefPubMedGoogle Scholar
  14. 14.
    M.M. Giusti, R.E. Wrolstad, S.J. Schwartz eds. Handbook of Food Analytical Chemistry (Wiley, New York, 2005), pp. 19–31Google Scholar
  15. 15.
    I.F.F. Benzie, J.J. Strain, Anal. Biochem. 239, 70–76 (1996)CrossRefPubMedGoogle Scholar
  16. 16.
    O. Saracoglu, B. Ozturk, K. Yildiz, E. Kucuker, Sci. Hortic-Amsterdam. 226, 19–23 (2017)CrossRefGoogle Scholar
  17. 17.
    V.L. Singleton, J.L. Rossi, Am. J. Enol. Viticult. 16, 144–158 (1965)Google Scholar
  18. 18.
    M.A. Rodriguez-Delgado, S. Malovana, J.P. Perez, T. Borges, F.G. Montelongo, J. Chromatogr. A 912, 249–257 (2001)CrossRefPubMedGoogle Scholar
  19. 19.
    P. Melgarejo, D.M. Salazar, F. Artes, Eur. Food Res. Technol. 211, 185–190 (2000)CrossRefGoogle Scholar
  20. 20.
    M. Gundogdu, F. Muradoglu, R.I. Gazioglu Sensoy, H. Yilmaz, Sci. Hortic-Amsterdam. 132, 37–41 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Gundogdu, K. Ozrenk, S. Ercisli, T. Kan, O. Kodad, A. Hegedus, Biol. Res. 47, 1–5 (2014)CrossRefGoogle Scholar
  22. 22.
    B. Olas, Front. Pharmacol. 9, 78 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    M. Özgen, S. Serçe, C. Kaya, Sci. Hortic-Amsterdam. 119, 275–279 (2009)CrossRefGoogle Scholar
  24. 24.
    N. Gungor, M. Sengul, Int. J. Food Prop. 11, 44–52 (2008)CrossRefGoogle Scholar
  25. 25.
    R.M. Ferreyra, S.Z. Viña, A. Mugridge, A.R. Chaves, Sci. Hortic-Amsterdam 112, 27–32 (2007)CrossRefGoogle Scholar
  26. 26.
    Q. Ali, M. Ashraf, Environ. Exp. Bot. 71, 249–259 (2011)CrossRefGoogle Scholar
  27. 27.
    H.S. Kim, S.J. Park, S.H. Hyun, S.O. Yang, J. Lee, J.H. Auh, H.K. Choi, Food Res. Int. 44, 1977–1987 (2011)CrossRefGoogle Scholar
  28. 28.
    E.M. Sanchez, A.C. Sanchez, A.A. Carbonell-Barrachina, P. Melgarejo, F. Hernandez, J.J. Martinez-Nicolas, Int. J. Food Sci. Technol. 49, 477–483 (2014)CrossRefGoogle Scholar
  29. 29.
    D. Liang, T. Zhu, Z. Ni, L. Lin, Y. Tang, Z. Wang, X. Wang, J. Wang, X. Lv, H. Xia, PLoS ONE 12, 1–16 (2017)Google Scholar
  30. 30.
    C. Pereira, M. López-Corrales, M.J. Serradilla, M.D.C. Villalobos, S. Ruiz-Moyano, A. Martín, J. Food Compos. Anal. 64, 203–212 (2017)CrossRefGoogle Scholar
  31. 31.
    M.D. Vithana, Z. Singh, S.K. Johnson, J. Sci. Food Agric. 98, 1460–1468 (2017)CrossRefPubMedGoogle Scholar
  32. 32.
    M.M. Natic, D.C. Dabic, A. Papetti, M.M. Fotiric-aksic, V. Ognjanov, M. Ljubojevic, Z.L.J. Tesic, Food Chem. 171, 128–136 (2015)CrossRefPubMedGoogle Scholar
  33. 33.
    R. Karjalainen, A. Lehtinen, V. Hietaniemi, J.M. Pihlava, K. Jokinen, M. Keinänen, R. Julkunen-Tiito, Acta Hortic. 567, 353–356 (2002)CrossRefGoogle Scholar
  34. 34.
    J. Gruz, F.A. Ayaz, H. Torun, M. Strnad, Food Chem. 124, 271–277 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Horticulture, Faculty of AgricultureUniversity of GaziosmanpasaTokatTurkey

Personalised recommendations