Advertisement

Journal of Food Measurement and Characterization

, Volume 12, Issue 3, pp 2145–2157 | Cite as

Effects of two different drying methods (freeze-drying and hot air-drying) on the phenolic and carotenoid profile of ‘Ataulfo’ mango by-products

  • Begoña de Ancos
  • Concepción Sánchez-Moreno
  • Lorenzo Zacarías
  • María Jesús Rodrigo
  • Sonia Sáyago Ayerdí
  • Francisco J. Blancas Benítez
  • J. Abraham Domínguez Avila
  • Gustavo A. González-Aguilar
Original Paper

Abstract

The agro-industrial processing of mango generates high amounts of by-products, like peels and paste, that are commonly discarded. These are potential sources of bioactive ingredients, such as phenolic compounds and carotenoids, that can be used to supplement other edible products to increase their nutritional value. In order to be successful in this regard, the processing methods used must avoid losses of the compounds of interest. The objective of this study was to identify the effects of freeze-drying (frozen 24 h at − 80 °C, freeze dried 48 h at − 50 °C, 4.00 Pa) and hot air-drying (convective hot air at 60 °C) on the profile and concentration of phenolic compounds and carotenoids, using sensitive chromatographic analyses. Our data showed that the total phenolic concentration, and that of the most abundant compounds (mangiferin and valoneic acid dilactone), were unaffected by drying method. Conversely, freeze-dried paste had greater carotenoid concentration than peel, while hot air-dried peel had greater carotenoid concentration than paste (main carotenoids: all-trans-β-carotene, 9-cis-β-carotene, all-trans-lutein, and 13-cis-β-cryptoxanthin). We concluded that carotenoids from mango peel and paste were more sensitive to drying method than phenolic compounds, and the effects on each by-product were in function of the food matrix and method used. By choosing the most adequate drying method, mango by-products can be sources of bioactive compounds to produce functional foods or beverages.

Keywords

Fruit by-products Freeze-drying Air-drying Phenolic compounds Carotenoids 

Notes

Acknowledgements

This work was funded by Consejo Nacional de Ciencia y Tecnología (CONACYT), through project number 563: “Un Enfoque Multidisciplinario de la Farmacocinética de Polifenoles de Mango Ataulfo: Interacciones Moleculares, Estudios Preclínicos y Clínicos”.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    H. Palafox-Carlos, E.M. Yahia, G.A. Gonzalez-Aguilar, Food Chem. 135(1), 105–111 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Palafox-Carlos, J. Gil-Chavez, R.R. Sotelo-Mundo, J. Namiesnik, S. Gorinstein, G.A. Gonzalez-Aguilar, Molecules 17(11), 12657–12664 (2012)CrossRefGoogle Scholar
  3. 3.
    S.G. Sayago-Ayerdi, C.L. Moreno-Hernandez, E. Montalvo-Gonzalez, M.L. Garcia-Magana, M.M.M. de Oca, J.L. Torres, J. Perez-Jimenez, Food Res. Int. 51(1), 188–194 (2013)CrossRefGoogle Scholar
  4. 4.
    M.D. Garcia-Magana, H.S. Garcia, L.A. Bello-Perez, S.G. Sayago-Ayerdi, M.M.M. de Oca, Plant Food Hum. Nutr. 68(3), 254–258 (2013)CrossRefGoogle Scholar
  5. 5.
    A.M. Abbasi, F.Y. Liu, X.B. Guo, X. Fu, T. Li, R.H. Liu, Int. J. Food Sci. Technol. 52(3), 817–826 (2017)CrossRefGoogle Scholar
  6. 6.
    E. Dorta, M.G. Lobo, M. Gonzalez, LWT-Food Sci. Technol. 45(2), 261–268 (2012)CrossRefGoogle Scholar
  7. 7.
    C. Henriquez, A. Cordova, S. Almonacid, J. Saavedra, J. Food Eng. 143, 146–153 (2014)CrossRefGoogle Scholar
  8. 8.
    M.L. Chen, D.J. Yang, S.C. Liu, Int. J. Food Sci. Technol. 46(6), 1179–1185 (2011)CrossRefGoogle Scholar
  9. 9.
    P.P. Lewicki, Trends Food Sci. Technol. 17(4), 153–163 (2006)CrossRefGoogle Scholar
  10. 10.
    P. Chantaro, S. Devahastin, N. Chiewchan, LWT-Food Sci. Technol. 41(10), 1987–1994 (2008)CrossRefGoogle Scholar
  11. 11.
    A. Ciurzyńska, A. Lenart, Pol. J. Food Nutr. Sci. 61(3), 165–171 (2011)Google Scholar
  12. 12.
    X. Duan, X.T. Yang, G.Y. Ren, Y.Q. Pang, L.L. Liu, Y.H. Liu, Dry Technol. 34(11), 1271–1285 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Ratti, J. Food Eng. 49(4), 311–319 (2001)CrossRefGoogle Scholar
  14. 14.
    E. Dorta, M. Gonzalez, M.G. Lobo, C. Sanchez-Moreno, B. de Ancos, Food Res. Int. 57, 51–60 (2014)CrossRefGoogle Scholar
  15. 15.
    E. Dorta, M.G. Lobo, M. Gonzalez, Plant Food Hum. Nutr. 68(2), 190–199 (2013)CrossRefGoogle Scholar
  16. 16.
    E. Dorta, M.G. Lobo, M. Gonzalez, Food Bioprocess. Technol. 6(4), 1067–1081 (2013)CrossRefGoogle Scholar
  17. 17.
    L. Carmona, L. Zacarias, M.J. Rodrigo, Postharvest Biol. Technol. 74, 108–117 (2012)CrossRefGoogle Scholar
  18. 18.
    A.J. Melendez-Martinez, C.M. Stinco, C. Liu, X.D. Wang, Food Chem. 138(2–3), 1341–1350 (2013)CrossRefGoogle Scholar
  19. 19.
    M.J. Rodrigo, J.F. Marcos, F. Alférez, M.D. Mallent, L. Zacarías, J. Exp. Bot. 54(383), 727–738 (2003)CrossRefGoogle Scholar
  20. 20.
    J.C. Barreto, M.T.S. Trevisan, W.E. Hull, G. Erben, E.S. de Brito, B. Pfundstein, G. Wurtele, B. Spiegelhalder, R.W. Owen, J. Agric. Food Chem. 56(14), 5599–5610 (2008)CrossRefGoogle Scholar
  21. 21.
    A.M. Gomez-Caravaca, A. Lopez-Cobo, V. Verardo, A. Segura-Carretero, A. Fernandez-Gutierrez, Electrophoresis 37(7–8), 1072–1084 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Schieber, N. Berardini, R. Carle, J. Agric. Food Chem. 51(17), 5006–5011 (2003)CrossRefGoogle Scholar
  23. 23.
    C.M. Ajila, L.J. Rao, U.J.S.P. Rao, Food Chem. Toxicol. 48(12), 3406–3411 (2010)CrossRefGoogle Scholar
  24. 24.
    N. Berardini, R. Carle, A. Schieber, Rapid Commun. Mass Spectrom. 18(19), 2208–2216 (2004)CrossRefGoogle Scholar
  25. 25.
    T. Beelders, D. de Beer, E. Joubert, J. Agric. Food Chem. 63(22), 5518–5527 (2015)CrossRefGoogle Scholar
  26. 26.
    H. Ichiki, O. Takeda, I. Sakakibara, S. Terabayashi, S. Takeda, H. Sasaki, J. Nat. Med. 61(2), 146–153 (2007)CrossRefGoogle Scholar
  27. 27.
    B.G. Oliveira, H.B. Costa, J.A. Ventura, T.P. Kondratyuk, M.E.S. Barroso, R.M. Correia, E.F. Pimentel, F.E. Pinto, D.C. Endringer, W. Romao, Food Chem. 204, 37–45 (2016)CrossRefGoogle Scholar
  28. 28.
    K.J. Meyers, T.J. Swiecki, A.E. Mitchell, J. Agric. Food Chem. 54(20), 7686–7691 (2006)CrossRefGoogle Scholar
  29. 29.
    R. Garcia-Villalba, J.C. Espin, K. Aaby, C. Alasalvar, M. Heinonen, G. Jacobs, S. Voorspoels, T. Koivumaki, P.A. Kroon, E. Pelvan, S. Saha, F.A. Tomas-Barberan, J. Agric. Food Chem. 63(29), 6555–6566 (2015)CrossRefGoogle Scholar
  30. 30.
    J. Perez-Jimenez, J.L. Torres, J. Agric. Food Chem. 59(24), 12713–12724 (2011)CrossRefGoogle Scholar
  31. 31.
    A. López-Cobo, V. Verardo, E. Diaz-de-Cerio, A. Segura-Carretero, A. Fernández-Gutiérrez, A.M. Gómez-Caravaca, Food Res. Int. (2017)Google Scholar
  32. 32.
    D.S. Sogi, M. Siddiq, I. Greiby, K.D. Dolan, Food Chem. 141(3), 2649–2655 (2013)CrossRefGoogle Scholar
  33. 33.
    D.S. Sogi, M. Siddiq, K.D. Dolan, LWT-Food Sci. Technol. 62(1), 564–568 (2015)CrossRefGoogle Scholar
  34. 34.
    Y.J. Sun, Y. Shen, D.H. Liu, X.Q. Ye, LWT-Food Sci. Technol. 60(2), 1269–1275 (2015)CrossRefGoogle Scholar
  35. 35.
    T. Vashisth, R.K. Singh, R.B. Pegg, LWT-Food Sci. Technol. 44(7), 1649–1657 (2011)CrossRefGoogle Scholar
  36. 36.
    J.D. Ornelas-Paz, E.M. Yahia, A.A. Gardea, Postharvest Biol. Technol. 50(2–3), 145–152 (2008)CrossRefGoogle Scholar
  37. 37.
    A.L. Vasquez-Caicedo, P. Sruamsiri, R. Carle, S. Neidhart, J. Agric. Food Chem. 53(12), 4827–4835 (2005)CrossRefGoogle Scholar
  38. 38.
    X.W. Sui, P.D. Kiser, T. Che, P.R. Carey, M. Golczak, W.X. Shi, J. von Lintig, K. Palczewski, J. Biol. Chem. 289(18), 12286–12299 (2014)CrossRefGoogle Scholar
  39. 39.
    J. von Lintig, Annu. Rev. Nutr. 30, 35–56 (2010)CrossRefGoogle Scholar
  40. 40.
    C. Hernandez-Brenes, P.A. Ramos-Parra, D.A. Jacobo-Velazquez, R. Villarreal-Lara, R.I. Diaz-De la Garza, Tropical and Subtropical Fruits: Flavors, Color, and Health Benefits, In: G.K.J.B.S. Patil, C.O. Roa, K. Mahattanatawee, Editors. (ACS, Washington, D.C., 2013) pp. 29–42Google Scholar
  41. 41.
    J. Mares, Annu. Rev. Nutr. 36, 571–602 (2016)CrossRefGoogle Scholar
  42. 42.
    X. Hou, J. Rivers, P. Leon, R.P. McQuinn, B.J. Pogson, Trends Plant Sci. 21(9), 792–803 (2016)CrossRefGoogle Scholar
  43. 43.
    Y. Sharoni, K. Linnewiel-Hermoni, M. Khanin, H. Salman, A. Veprik, M. Danilenko, J. Levy, Mol. Nutr. Food Res. 56(2), 259–269 (2012)CrossRefGoogle Scholar
  44. 44.
    D. Albanese, G. Adiletta, M. D’Acunto, L. Cinquanta, M. Di Matteo, Int. J. Food Sci. Technol. 49(11), 2458–2463 (2014)CrossRefGoogle Scholar
  45. 45.
    E. Ryckebosch, K. Muylaert, M. Eeckhout, T. Ruyssen, I. Foubert, J. Agric. Food Chem. 59(20), 11063–11069 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Begoña de Ancos
    • 1
  • Concepción Sánchez-Moreno
    • 1
  • Lorenzo Zacarías
    • 2
  • María Jesús Rodrigo
    • 2
  • Sonia Sáyago Ayerdí
    • 3
  • Francisco J. Blancas Benítez
    • 3
  • J. Abraham Domínguez Avila
    • 4
  • Gustavo A. González-Aguilar
    • 4
  1. 1.Department of Characterization, Quality and Safety, Institute of Food ScienceTechnology and Nutrition (ICTAN-CSIC)MadridSpain
  2. 2.Instituto de Agroquímica y Tecnología de Alimentos (IATA)Consejo Superior de Investigaciones Científicas (CSIC)PaternaSpain
  3. 3.Laboratorio Integral de Investigación en AlimentosInstituto Tecnológico de TepicTepicMexico
  4. 4.Coordinación de Tecnología de Alimentos de Origen VegetalCentro de Investigación en Alimentación y Desarrollo A. C.HermosilloMexico

Personalised recommendations