Post-effects of high hydrostatic pressure on chlorophylls and chlorophyll–protein complexes in spinach during storage

  • Rongrong Wang
  • Hui Zhou
  • Shenghua Ding
  • Kejing An
  • Shiyi Ou
Original Paper
  • 6 Downloads

Abstract

This study investigated the effects of high hydrostatic pressure (HHP) (100, 250, and 500 MPa for 5 min) on components and functions of thylakoid membrane extracted from spinach subjected to 26 days of storage. We aimed to better understand the changes of chlorophylls and chlorophyll–protein complexes under HHP conditions. HHP treatments maintained higher (p < 0.05) chlorophylls and soluble protein contents than thermal treatment in the whole storage duration. Protein peptide components, including PsaA, PsaB, CP43, CP47, LHCII, CP26, and CP24 were more stable in HHP-treated samples than those of thermally treated ones. Moreover, chlorophylls emission and excitation fluorescence spectra capacities of thylakoid membrane were better maintained in HHP-treated samples than thermally treated ones, indicating higher light-harvesting and excitation efficiencies of thylakoid membrane during storage. Hence, HHP treatments, especially for 100 and 250 MPa, are beneficial for retention of chlorophylls and chlorophyll–protein complexes by stabilizing components and functions of thylakoid membrane during storage.

Keywords

High hydrostatic pressure Chlorophylls Chlorophyll–protein complexes Thylakoid membrane Storage 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 31601525), National Natural Science Foundation of China (No. 31501543) and Scientific Research Fund of Hunan Provincial Education Department (16B123).

References

  1. 1.
    J.A. Steet, C.H. Tong, J. Food Sci. 61, 924 (1996)CrossRefGoogle Scholar
  2. 2.
    B. Daum, W. Kühlbrandt, J. Exp. Bot. 62, 2393 (2011)CrossRefGoogle Scholar
  3. 3.
    P. Jarvis, L.J. Chen, H. Li, C.A. Peto, C. Fankhause, J. Chory, Science 282, 100 (1998)CrossRefGoogle Scholar
  4. 4.
    R.R. Wang, S.H. Ding, X.S. Hu, X.J. Liao, Y. Zhang, Eur. Food Res. Technol. 242, 1533 (2016)CrossRefGoogle Scholar
  5. 5.
    H. Kirchhoff, S. Haferkamp, J.F. Allen, D.B.A. Epstein, C.W. Mullineaux, Plant Physiol. 146, 1571 (2008)CrossRefGoogle Scholar
  6. 6.
    T. Norton, D.W. Sun, Food Bioprocess Technol. 1, 2 (2008)CrossRefGoogle Scholar
  7. 7.
    F.J. Delgado, J. Rodríguez-Pinilla, G. Márquze, I. Roa, R. Ramírez, Eur. Food Res. Technol. 240, 1167 (2015)CrossRefGoogle Scholar
  8. 8.
    D.A. Jacobo-Velázquez, C. Hernández-Brenes, J. Food Sci. 75, 264 (2010)CrossRefGoogle Scholar
  9. 9.
    R.R. Wang, T.T. Wang, Q. Zheng, X.S. Hu, Y. Zhang, X.J. Liao, J. Sci. Food. Agric. 92, 1417 (2012)CrossRefGoogle Scholar
  10. 10.
    R.R. Wang, Q. Xu, J. Yao, Y.J. Zhang, X.J. Liao, X.S. Hu, J.H. Wu, Y. Zhang, Innov. Food Sci. Emerg. 17, 63 (2013)CrossRefGoogle Scholar
  11. 11.
    O. Schlüter, J. Foerster, M. Geyer, D. Knorr, W.B. Herppich, Food Bioprocess Technol. 2, 291 (2009)CrossRefGoogle Scholar
  12. 12.
    I. Wittig, H.P. Braun, H. Schägger, Nat. Protoc. 1, 418 (2006)CrossRefGoogle Scholar
  13. 13.
    S.G. Rudra, B.C. Sarkar, U.S. Shivhare, Food Bioprocess Technol. 1, 91 (2008)CrossRefGoogle Scholar
  14. 14.
    S.S. Teng, B.H. Chen, Food Chem. 65, 367 (1999)CrossRefGoogle Scholar
  15. 15.
    O. Lowry, A. Rosebrough, A. Farr, M.R. Randall, J. Biol. Chem. 193, 680 (1951)Google Scholar
  16. 16.
    N. Kim, S.H. Son, J.S. Maeng, Y.J. Cho, C.T. Kim, J. Sci. Food. Agric. 96, 970 (2016)CrossRefGoogle Scholar
  17. 17.
    L. Ferroni, C. Baldisseroto, L. Pantaleni, M.P. Fasulo, P. Fagioli, S. Pancaldi, Plant Biol. 11, 631 (2009)CrossRefGoogle Scholar
  18. 18.
    A. Van Loey, V. Ooms, C. Weemaes, I. Van den Broeck, L. Ludikhuyze, D.S. Indrawati, M. Hendrickx, J. Agric. Food Chem. 46, 5289 (1998)CrossRefGoogle Scholar
  19. 19.
    S. Eshaghi, B. Andersson, J. Barber, FEBS Lett. 446, 23 (1999)CrossRefGoogle Scholar
  20. 20.
    Y.L. Tang, X.G. Wen, Q.T. Lu, Z.P. Yang, Z.K. Cheng, C.M. Lu, Plant Physiol. 143, 629 (2007)CrossRefGoogle Scholar
  21. 21.
    K. Dobrev, D. Stanoeva, M. Velitchkova, A.V. Popova, Photochem. Photobiol. 92, 436 (2016)CrossRefGoogle Scholar
  22. 22.
    J.R. Moisan, T.A.H. Moisan, M.A. Linkswiler, J. Geophys. Res. 116.  https://doi.org/10.1029/2010JC006786 (2011)
  23. 23.
    Y.Z. Yacobi, J. Köhler, F. Leunert, A. Gitelson, Limnol. Oceanogr.: Methods 13, 157 (2015)CrossRefGoogle Scholar
  24. 24.
    M. Havaux, Plant Physiol. 100, 424 (1992)CrossRefGoogle Scholar
  25. 25.
    H.M. Wei, Y.W. Chen, N.H. Zhang, Y. Zhao, L.F. Du, Acta Botanica Boreali-Occidentalia Sinia 25, 250 (2005)Google Scholar
  26. 26.
    J. Naus, L. Dvorak, R. Kuropatwa, M. Maslan, Photosynthetica 27, 563 (1992)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rongrong Wang
    • 1
  • Hui Zhou
    • 1
  • Shenghua Ding
    • 2
  • Kejing An
    • 3
  • Shiyi Ou
    • 4
  1. 1.College of Food Science and TechnologyHunan Agricultural UniversityChangshaChina
  2. 2.Hunan Agricultural Product Processing InstituteHunan Academy of Agricultural SciencesChangshaChina
  3. 3.Sericulture and Agri-Food Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
  4. 4.Department of Food Science and TechnologyJinan UniversityGuangzhouChina

Personalised recommendations