Skip to main content
Log in

Bioaccessibility of bioactive compounds and antioxidant activity in murta (Ugni molinae T.) berries juices

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The aim of the study was to characterize the bioactivity and storability of a steam juicer extract from murta (Ugni molinae T.) berries, comparing with the bioactive quality of the fresh fruit. An extraction assay was performed at three different processing times and quality of the extract was assessed by determining bioactives content, antioxidant activity after processing and during storage at different temperatures (5, 20 and 35 °C). Total polyphenols, total anthocyanins and antioxidant activity in fresh fruits and juice extracts were evaluated as bioaccessible fractions during an in vitro gastric-intestinal digestion process. Weibull distribution was applied to model the storage behavior of the extracts, and fitted well to experimental data on degradation kinetics of bioactive phenolics and antioxidant activity. The best processing times for highest extraction of bioactive phenolics were found to be 28 ± 1 min for frozen-thawed and 34 ± 1 min for fresh fruits. The juice extract can retain around 80% of the polyphenols and anthocyanins after 21 days of storage at 5 °C. The bioaccessibility index of polyphenols in fresh murta berries or in juice achieved a relatively high value of 70% at the end of the small intestine digestive step. However, the bioactives in the bioaccessible fractions of the fruits and juices had significantly different behavior during the gastric-intestinal digestion steps. The juice released the bioaccessible bioactives in the earlier gastric stage, while the fresh fruit unfolded a higher antioxidant activity with increased release of bioactives in the small intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.N. Ames, M.K. Shigenaga, T.M. Hagen, Proc. Nat. Acad. Sci. 90, 7915–7922 (1993)

    Article  CAS  Google Scholar 

  2. J. Boyer, R. Liu, Nutr. J. (2004). doi:10.1186/1475-2891-3-5

    Google Scholar 

  3. V. López, S. Akerreta, E. Casanova, J.M. García-Mina, R.Y. Cavero, M.I. Calvo, Plant Foods Hum. Nutr. 62, 151–155 (2007)

    Article  Google Scholar 

  4. N. Guthrie, E.M.N. Kurowska, Handbook of Nutraceuticals and Functional Foods (CRC Press, Boca Raton, 2001), pp. 113–126

    Google Scholar 

  5. H. Wang, W. Fan, H. Li, J. Yang, J. Huang, P. Zhang, PLoS ONE (2013). doi:10.1371/journal.pone.0078484

    Google Scholar 

  6. R. du Toit, Y. Volsteedt, Z. Apostolides, Toxicology (2001). doi:10.1016/S0300-483X(01)00446-2

    Google Scholar 

  7. C. Vijaya, D.,M. Raghunath, Food Res. Int. (2010). doi:10.1016/j.foodres.2009.10.006

    Google Scholar 

  8. A. Zulueta, M.J. Esteve, A. Frígola, Food Chem. (2009). doi:10.1016/j.foodchem.2008.09.033

    Google Scholar 

  9. S. Devalaraja, S. Jain, H. Yadav, Food Res. Int. (2011). doi:10.1016/j.foodres.2011.04.008

    Google Scholar 

  10. H. Speisky, A. Peña, M. Gómez, C. Fredes, M. Hurtado, M. Gotteland, O. Brunser, Acta Hortic. (2008). doi:10.17660/ActaHortic.2008.777.74

    Google Scholar 

  11. A. Ruiz, I. Gutierrez, C. Mardones, C. Vergara, E. Herlitz, M. Vega, C. Dorau, P. Winterhalter, D. Von Baer, J. Agric. Food Chem. (2010). doi:10.1021/jf100173x

    Google Scholar 

  12. M. Schreckinger, J. Lotton, M. Lila, E. Gonzalez de Mejia, J. Med. Food (2010). doi:10.1021/jf100975m

    Google Scholar 

  13. E. Scheuermann, I. Seguel, A. Montenegro, R. Bustos, E. Hormazábal, A. Quiroz, J. Sci. Food Agric. (2008). doi:10.1002/jsfa.3111

    Google Scholar 

  14. J.M. Carbonell-Capella, M. Buniowska, F.J. Barba, M.J. Esteve, A. Frígola, Compr. Rev. Food Sci. Food Saf. (2014). doi:10.1111/1541-4337.12049

    Google Scholar 

  15. E. Fernández-García, I. Carvajal-Lerida, A. Pérez-GÁLVEZ, Nutr. Res. (2009). doi:10.1016/j.nutres.2009.09.016

    Google Scholar 

  16. R.P. Heaney, J. Nutr. 131, 1344–1348 (2001)

  17. J.K. Aschoff, C.L. Rolke, N. Breusing, A. Bosy-Westphal, J. Högel, R. Carle, R.M. Schweiggert, Mol. Nutr. Food Res. (2015). doi:10.1002/mnfr.201500327

    Google Scholar 

  18. C.M. Stinco, R. Fernández-Vázquez, M.L. Escudero-Gilete, F.J. Heredia, A.J. Meléndez-Martínez, I.M. Vicario, J Agric. Food Chem. (2012). doi:10.1021/jf2043949

    Google Scholar 

  19. M. Buniowska, J.M. Carbonell-Capella, A. Frigola, M.J. EstEVE, Food Chem. (2017). doi:10.1016/j.foodchem.2016.10.093

    Google Scholar 

  20. D. Tagliazucchi, E. Verzelloni, D. Bertolini, A. Conte, Food Chem. (2010). doi:10.1111/j.1745-4514.2011.00569.x

    Google Scholar 

  21. E. Hackelsberger, Steam Juice Extractor. U.S. Patent No. US4640186 (A) – 1987-02-03 (1987)

  22. AOAC International, Official Methods of Analysis of the Association of Official Analytical Chemists, 16th edn. (AOAC International, Virginia, 1996)

    Google Scholar 

  23. A.M. Chuah, Y.-C. Lee, T. Yamaguchi, H. Takamura, L.-J. Yin, T. Matoba, Food Chem. (2008). doi:10.1016/j.foodchem.2008.03.022

    Google Scholar 

  24. G. Cheng, P. Breen, J. Am. Soc. Hortic. Sci. 116, 865–869 (1991)

    CAS  Google Scholar 

  25. W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT Food Sci. Technol. (1995). doi:10.1016/S0023-6438(95)80008-5

    Google Scholar 

  26. G. Tenore, P. Campiglia, A. Ritieni, E. Novellino, Food Chem. (2013). doi:10.1016/j.foodchem.2013.06.051

    Google Scholar 

  27. S. Chassagne-Berces, C. Poirier, M.-F. Devaux, F. Fonseca, M. Lahaye, G. Pigorini, C. Girault, M. Marin, F. Guillon, Food Res. Int. (2009). doi:10.1016/j.foodres.2009.03.001

    Google Scholar 

  28. F. Carvajal, F. Palma, M. Jamilena, D. Garrido, Postharvest Biol. Technol. (2015). doi:10.1016/j.postharvbio.2015.05.013

    Google Scholar 

  29. C. Wei, J. Huang, X. Wang, G.A. Blackburn, Y. Zhang, S. Wang, L.R. Mansaray, Remote Sens. Environ. (2017). doi:10.1016/j.rse.2017.03.042

    Google Scholar 

  30. R.G. McGuire, Hortic. Sci. 27, 1254–1544 (1992)

    Google Scholar 

  31. K. Rodríguez, K. Ah-Hen, A. Vega-Gálvez, J. López, I. Quispe-Fuentes, R. Lemus-Mondaca, L. Gálvez-Ranilla, Int. J. Food Sci. Technol. (2013). doi:10.1111/ijfs.12392

    Google Scholar 

  32. S.Y. Leong, I. Oey, Food Chem. (2012). doi:10.1016/j.foodchem.2012.02.052

    Google Scholar 

  33. N. Balasundram, K. Sundram, S. Samman, Food Chem. (2006). doi:10.1016/j.foodchem.2005.07.042

    Google Scholar 

  34. C. Vasco, J. Ruales, A. Kamal-Eldin, Food Chem. (2008). doi:10.1016/j.foodchem.2008.04.054

    Google Scholar 

  35. L. Fu, B.-T. Xu, X.-R. Xu, R.-Y. Gan, Y. Zhang, E.-Q. Xia, H.-B. Li, Food Chem. (2011). doi:10.1016/j.foodchem.2011.04.079

    Google Scholar 

  36. A. Kirca, B. Cemeroglu, Food Chem. (2003). doi:10.1016/S0308-8146(02)00500-9

    Google Scholar 

  37. A. Kirca, M. Özkan, B. Cemeroglu, Food Chem. (2007). doi:10.1016/j.foodchem.2006.01.019

    Google Scholar 

  38. N. Harbourne, J. Jacquier, D. Morgan, J. Lyng, Food Chem. (2008). doi:10.1016/j.foodchem.2008.03.023

    Google Scholar 

  39. A. Wojdylo, J. Oszmianski, P. Laskowski, J. Agric. Food Chem. (2008). doi:10.1021/jf800510j

    Google Scholar 

  40. J. Parada, J.M. Aguilera, J. Food Sci. (2007). doi:10.1111/j.1750-3841.2007.00274.x

    Google Scholar 

  41. AOAC International, Official methods of analysis of the Association of Official Analytical Chemists, 15th edn. (AOAC International, Virginia, 1990)

    Google Scholar 

  42. E. Taboada, P. Fisher, R. Jara, E. Zuñiga, M. Gidekel, J. Cabrera, E. Pereira, A. Gutiérrez-Moraga, R. Villalonga, G. Cabrera, Food Chem. 123, 669–678 (2010). doi:10.1016/j.foodchem.2010.05.030

    Article  CAS  Google Scholar 

  43. L. He, H. Xu, X. Liu, W. He, F. Yuan, Z. Hou, Y. Gao, Food Res. Int. (2011). doi:10.1016/j.foodres.2010.05.023

    Google Scholar 

  44. J. Bouayed, L. Hoffmann, T. Bohn, Food Chem. (2011). doi:10.1016/j.foodchem.2011.02.052

    Google Scholar 

  45. B. Janković, Biopolymers (2013). doi:10.1002/bip.22271

    Google Scholar 

  46. J.D. Everette, Q.M. Bryant, A.M. Green, Y.A. Abbey, G.W. Wangila, R.B. Walker, J. Agric. Food Chem. (2010). doi:10.1021/jf1005935

    Google Scholar 

  47. M. Ikawa, T.D. Schaper, C.A. Dollard, J.J. Sasner, J. Agric. Food Chem. (2003). doi:10.1021/jf021099r

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support of CONICYT-Chile through FONDECYT Project N° 1150451 to conduct this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kong S. Ah-Hen.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ah-Hen, K.S., Mathias-Rettig, K., Gómez-Pérez, L.S. et al. Bioaccessibility of bioactive compounds and antioxidant activity in murta (Ugni molinae T.) berries juices. Food Measure 12, 602–615 (2018). https://doi.org/10.1007/s11694-017-9673-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9673-4

Keywords

Navigation