Temperature-regulating materials for advanced food packaging applications: a review

  • Suman Singh
  • Kirtiraj K. Gaikwad
  • Myungho Lee
  • Youn Suk Lee
Original Paper
  • 80 Downloads

Abstract

The use of temperature-regulating material (TRM)-based food packaging is recently trending in the food science and technology sectors. Although this technology is still not fully commercially viable, it has good potential to control the temperature of perishable and high-value agricultural products during transport. Scope and approach: Firstly, this paper describes all the aspects of TRM packaging, including their classification, various technical approaches, and commercial applications, with special focus on the direct integration of TRMs into food packaging systems. Secondly, to provide useful guidelines for future research in the field, this paper discusses some important aspects that still hinder the full exploitation of TRM technology within the food packaging industry. To make the TRM packaging systems commercially viable, future research needs to consider some important aspects including cost, consumer acceptance and confidence, regulatory aspects (e.g., labeling), and multi-functionality.

Keywords

Temperature regulating material (TRM) Food packaging Encapsulation Phase transition 

Notes

Acknowledgements

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry, and Fisheries (IPET) through the High Value-Added Food Technology Development Program, funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA) (316067-3).

References

  1. 1.
    K. Likar, M. Jevšnik, Food Control. 17, 108 (2006). doi: 10.1016/j.foodcont.2004.09.009 CrossRefGoogle Scholar
  2. 2.
    O. Laguerre, H.M. Hoang, D. Flick, Trends Food Sci. Technol. 29, 87 (2013). doi: 10.1016/j.tifs.2012.08.001 CrossRefGoogle Scholar
  3. 3.
    M. Křížek, K. Matějková, F. Vácha, E. Dadáková, Food Chem. 151, 466 (2014). doi: 10.1016/j.foodchem.2013.11.094 CrossRefGoogle Scholar
  4. 4.
    S. Singh, M.ho Lee, lnsik Park, Y. Shin, Y.S. Lee, J. Food Sci. Technol. 53, 2505 (2016). doi: 10.1007/s13197-016-2216-x CrossRefGoogle Scholar
  5. 5.
    K.K. Gaikwad, J.Y. Lee, Y.S. Lee, J. Food Sci. Technol. 53, 1608 (2016). doi: 10.1007/s13197-015-2104-9 CrossRefGoogle Scholar
  6. 6.
    Y. Jin, W. Lee, Z. Musina, Y. Ding, Particuology 8, 588 (2010). doi: 10.1016/j.partic.2010.07.009 CrossRefGoogle Scholar
  7. 7.
    M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, Energy Convers. Manag. 45, 1597 (2004). doi: 10.1016/j.enconman.2003.09.015 CrossRefGoogle Scholar
  8. 8.
    A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Renew. Sustain. Energy Rev. 13, 318 (2009). doi: 10.1016/j.rser.2007.10.005 CrossRefGoogle Scholar
  9. 9.
    D. Kim, I. Park, J. Seo, H. Han, W. Jang, J. Polym. Res. (2015). doi: 10.1007/s10965-014-0650-x Google Scholar
  10. 10.
    M. Ahmed, O. Meade, M.A. Medina, Energy Convers. Manag. 51, 383 (2010). doi: 10.1016/j.enconman.2009.09.003 CrossRefGoogle Scholar
  11. 11.
    P. Glouannec, B. Michel, G. Delamarre, Y. Grohens, Appl. Therm. Eng. 73, 194 (2014). doi: 10.1016/j.applthermaleng.2014.07.044 CrossRefGoogle Scholar
  12. 12.
    B. Copertaro, R. Fioretti, L. Sangelantoni, P. Principi, In IEEE 15th International Conference on Environment Electrical Engineering. EEEIC 2015, Conference Proceedings, p. 378 (2015). doi: 10.1109/EEEIC.2015.7165191
  13. 13.
    R. Fioretti, P. Principi, B. Copertaro, Energy Convers. Manag. 122, 131 (2016). doi: 10.1016/j.enconman.2016.05.071 CrossRefGoogle Scholar
  14. 14.
    W. Chalco-Sandoval, M.J. Fabra, A. López-Rubio, J.M. Lagaron, J. Food Eng. 164, 55 (2015). doi: 10.1016/j.jfoodeng.2015.04.032 CrossRefGoogle Scholar
  15. 15.
    M.A.-A. AlMa’adeed, I. Krupa, Fundamentals and industrial applications. In Polyolefin Compounds and Materials (Springer, New York, 2015)Google Scholar
  16. 16.
    A. Hasan, A.A. Sayigh, Renew. Energy 4, 69 (1994). doi: 10.1016/0960-1481(94)90066-3 CrossRefGoogle Scholar
  17. 17.
    A. Sari, K. Kaygusuz, Sol. Energy 71, 365 (2001). doi: 10.1016/S0038-092X(01)00075-5 CrossRefGoogle Scholar
  18. 18.
    A. Sari, K. Kaygusuz, Sol. Energy 72, 493 (2002). doi: 10.1016/S0038-092X(02)00026-9 CrossRefGoogle Scholar
  19. 19.
    V. Kumaresan, R. Velraj, S.K. Das, Heat Mass Transf. Und Stoffuebertragung 48, 1345 (2012). doi: 10.1007/s00231-012-0980-3 CrossRefGoogle Scholar
  20. 20.
    Y. Yuan, N. Zhang, W. Tao, X. Cao, Y. He, Renew. Sustain. Energy Rev. 29, 482 (2014). doi: 10.1016/j.rser.2013.08.107 CrossRefGoogle Scholar
  21. 21.
    F.O. Cedeño, M.M. Prieto, A. Espina, J.R. García, Thermochim. Acta 369, 39 (2001). doi: 10.1016/S0040-6031(00)00752-8 CrossRefGoogle Scholar
  22. 22.
    A. Sharma, A. Shukla, C.R. Chen, T.-N. Wu, Sustain. Energy Technol. Assessments 7, 17 (2014). doi: 10.1016/j.seta.2014.02.009 CrossRefGoogle Scholar
  23. 23.
    S. Wi, J. Seo, S.-G. Jeong, S.J. Chang, Y. Kang, S. Kim, Sol. Energy Mater. Sol. Cells 143, 168 (2015). doi: 10.1016/j.solmat.2015.06.040 CrossRefGoogle Scholar
  24. 24.
    A.R. Akhiani, M. Mehrali, S. Tahan Latibari, M. Mehrali, T.M.I. Mahlia, E. Sadeghinezhad, H.S.C. Metselaar, J. Phys. Chem. C 119, 22787 (2015). doi: 10.1021/acs.jpcc.5b06089 CrossRefGoogle Scholar
  25. 25.
    A. Sarı, C. Alkan, A. Biçer, J. Microencapsul. 33, 221 (2016). doi: 10.1016/j.enconman.2016.02.078 CrossRefGoogle Scholar
  26. 26.
    E. Zdraveva, J. Fang, B. Mijovic, T. Lin, Ind. Eng. Chem. Res. 54, 8706 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Chen, Z. Ling, X. Fang, Z. Zhang, Energy Convers. Manag. 105, 817 (2015). doi: 10.1016/j.enconman.2015.08.038 CrossRefGoogle Scholar
  28. 28.
    Z. Zhang, N. Zhang, J. Peng, X. Fang, X. Gao, Y. Fang, Appl. Energy 91, 426 (2012). doi: 10.1016/j.apenergy.2011.10.014 CrossRefGoogle Scholar
  29. 29.
    X. Zhang, X. Wang, D. Wu, Energy 111, 498 (2016). doi: 10.1016/j.energy.2016.06.017 CrossRefGoogle Scholar
  30. 30.
    A. Abhat, Sol. Energy 30, 313 (1983). doi: 10.1016/0038-092X(83)90186-X CrossRefGoogle Scholar
  31. 31.
    L. Royon, G. Guiffant, F. Trinquet, P. Perrot, Exp. Heat Transf. 18, 87 (2005). doi: 10.1080/08916150590914732 CrossRefGoogle Scholar
  32. 32.
    J. Giro-Paloma, M. Martinez, L.F. Cabeza, A.I. Fernandez, Renew. Sustain. Energy Rev. 53, 1059 (2016). doi: 10.1016/j.rser.2015.09.040 CrossRefGoogle Scholar
  33. 33.
    G. Fang, H. Li, F. Yang, X. Liu, S. Wu, Chem. Eng. J. 153, 217 (2009). doi: 10.1016/j.cej.2009.06.019 CrossRefGoogle Scholar
  34. 34.
    B. Alkan, A. Sari, A. Karaipekli, Energy Convers. Manag. 52, 687 (2011). doi: 10.1016/j.enconman.2010.07.047 CrossRefGoogle Scholar
  35. 35.
    W.T. Lin, D.S. Huang, M.T. Lin, C.M. Lai, Microsyst. Technol. 17, 693 (2011). doi: 10.1007/s00542-010-1154-1 CrossRefGoogle Scholar
  36. 36.
    R. Perez-Masia, A. Lopez-Rubio, M.J. Fabra, J.M. Lagaron, J. Appl. Polym. Sci. 130, 3251 (2013). doi: 10.1002/app.39555 CrossRefGoogle Scholar
  37. 37.
    Y. Konuklu, H.O. Paksoy, M. Unal, S. Konuklu, Energy Convers. Manag. 80, 382 (2014). doi: 10.1016/j.enconman.2014.01.042 CrossRefGoogle Scholar
  38. 38.
    H.M. Hoang, D. Leducq, R. Perez-Masia, J.M. Lagaron, E. Gogou, P. Taoukis, G. Alvarez, Int. J. Refrig. (2014). doi: 10.1016/j.ijrefrig.2014.07.002 Google Scholar
  39. 39.
    J.H. Johnston, J.E. Grindrod, M. Dodds, K. Schimitschek, Curr. Appl. Phys. 8, 508 (2008). doi: 10.1016/j.cap.2007.10.059 CrossRefGoogle Scholar
  40. 40.
    B. Gin, M.M. Farid, J. Food Eng. 100, 372 (2010). doi: 10.1016/j.jfoodeng.2010.04.016 CrossRefGoogle Scholar
  41. 41.
    S.P. Singh, G. Burgess, J. Singh, Packag. Technol. Sci. 21, 25 (2008). doi: 10.1002/pts.773 CrossRefGoogle Scholar
  42. 42.
    L. Melone, L. Altomare, A. Cigada, L. De Nardo, Appl. Energy 89, 339 (2012). doi: 10.1016/j.apenergy.2011.07.039 CrossRefGoogle Scholar
  43. 43.
    R. Pérez-Masiá, A. López-Rubio, M.J. Fabra, J.M. Lagaron, Innov. Food Sci. Emerg. Technol. 26, 415 (2014). doi: 10.1016/j.ifset.2014.10.010 CrossRefGoogle Scholar
  44. 44.
    M. Goldberg, R. Langer, X. Jia, J. Biomater. Sci. Polym. Ed. 18, 241 (2007). doi: 10.1163/156856207779996931 CrossRefGoogle Scholar
  45. 45.
    A. López-Rubio, J.M. Lagaron, Innov. Food Sci. Emerg. Technol. 13, 200 (2012). doi: 10.1016/j.ifset.2011.10.012 CrossRefGoogle Scholar
  46. 46.
    S.K. Park, J.H.J. Kim, J.W. Nam, H.D. Phan, J.K. Kim, Cem. Concr. Compos. 31, 447 (2009). doi: 10.1016/j.cemconcomp.2009.04.012 CrossRefGoogle Scholar
  47. 47.
    V.V. Tyagi, S.C. Kaushik, S.K. Tyagi, T. Akiyama, Renew. Sustain. Energy Rev. 15, 1373 (2011). doi: 10.1016/j.rser.2010.10.006 CrossRefGoogle Scholar
  48. 48.
    C. Castellón, I. Martorell, L.F. Cabeza, A.I. Fernández, A.M. Manich, Compatibility of plastic with phase change materials (TRM). Int. J. Energy Res. 35, 765 (2011)CrossRefGoogle Scholar
  49. 49.
    I. Bonadies, A. Izzo Renzi, M. Cocca, M. Avella, C. Carfagna, P. Persico, Ind. Eng. Chem. Res. 54, 9342 (2015). doi: 10.1021/acs.iecr.5b02187 CrossRefGoogle Scholar
  50. 50.
    S. Ahmadzadeh, A. Nasirpour, J. Keramat, N. Hamdami, T. Behzad, S. Desobry, Colloids Surf. A 468, 201 (2015). doi: 10.1016/j.colsurfa.2014.12.037 CrossRefGoogle Scholar
  51. 51.
    W. Chalco-Sandoval, M.J. Fabra, A. López-Rubio, J.M. Lagaron, Eur. Polym. J. 72, 23 (2015). doi: 10.1016/j.eurpolymj.2015.08.033 CrossRefGoogle Scholar
  52. 52.
    R. Pérez-Masiá, A. López-Rubio, J.M. Lagarón, Food Hydrocoll. 30, 182 (2013). doi: 10.1016/j.foodhyd.2012.05.010 CrossRefGoogle Scholar
  53. 53.
    J. Qian, Y. Zhang, F. Chen, Packaging Science and Technology (Trans Tech Publications, Zurich, 2012), pp. 437–441. http://www.scientific.net/AMM.200.437
  54. 54.
    A. Sarı, C. Alkan, A. Biçer, J. Microencapsul. 33, 221 (2016). doi: 10.3109/02652048.2016.1144820 CrossRefGoogle Scholar
  55. 55.
    S.-G. Jeong, S. Yu, S. Jang, J.-S. Park, T. Kim, J.-H. Lee, S. Kim, Korean J. Air Condition. Refrig. Eng. 25, 432 (2013)CrossRefGoogle Scholar
  56. 56.
    H.-S. Kim, J.-Y. Hwang, S.-H. Lim, J.-N. Lim, Y.-A. Son, Text. Color. Finish 26, 311 (2014)CrossRefGoogle Scholar
  57. 57.
    M. Mehrali, S.T. Latibari, M. Mehrali, T.M. Indra Mahlia, H.S. Cornelis Metselaar, M.S. Naghavi, E. Sadeghinezhad, A.R. Akhiani, Appl. Therm. Eng. 61, 633 (2013). doi: 10.1016/j.applthermaleng.2013.08.035 CrossRefGoogle Scholar
  58. 58.
    W. Chalco-Sandoval, M.J. Fabra, A. Lõpez-Rubio, J.M. Lagaron, J. Appl. Polym. Sci. 131, (2014). doi: 10.1002/app.40661
  59. 59.
    G. Li, Sustain. Energy Technol. Assessments 21, 33 (2017). doi: 10.1016/j.seta.2017.04.002 CrossRefGoogle Scholar
  60. 60.
    G. Li, W. Li, J. Therm. Anal. Calorim. 129, 915 (2017). doi: 10.1007/s10973-017-6220-9 CrossRefGoogle Scholar
  61. 61.
    J.-L. Zeng, S.-L. Sun, L. Zhou, Y.-H. Chen, L. Shu, L.-P. Yu, L. Zhu, L.-B. Song, Z. Cao, L.-X. Sun, J. Therm. Anal. Calorim. 129, 1583 (2017). doi: 10.1007/s10973-017-6352-y CrossRefGoogle Scholar
  62. 62.
    S. Singh, M.ho Lee, I. Park, Y.J. Shin, Y.S. Lee, J. Food Meas. Charact. 10, 781 (2016). doi: 10.1007/s11694-016-9363-7 CrossRefGoogle Scholar
  63. 63.
    K.K. Gaikwad, Y.S. Lee, J. Food Meas. Charact. (2016). doi  10.1007/s11694-017-9470-0 Google Scholar
  64. 64.
    S. Singh, K.K. Gaikwad, M. Lee, Y.S. Lee, J. Food Eng. (2017). doi: 10.1016/j.jfoodeng.2017.07.013 Google Scholar
  65. 65.
    K.K. Gaikwad, S. Singh, Y.S. Lee, Prog. Org. Coat. 111, 186 (2017). doi:  10.1016/j.porgcoat.2017.05.016 CrossRefGoogle Scholar
  66. 66.
    B.J. Ahn, K.K. Gaikwad, Y.S. Lee, J. Appl. Polym. Sci. 133, 1 (2016). doi: 10.1002/app.44138 CrossRefGoogle Scholar
  67. 67.
    W.S. Choi, S. Singh, Y.S. Lee, LWT Food Sci. Technol. 70, 213 (2016). doi: 10.1016/j.lwt.2016.02.036 CrossRefGoogle Scholar
  68. 68.
    K.K. Gaikwad, S.M. Lee, J.S. Lee, Y.S. Lee, J. Food Meas. Charact. (2017). doi: 10.1007/s11694-017-9551-0 Google Scholar
  69. 69.
    S. Singh, K.K. Gaikwad, S.-I. Park, Y.S. Lee, Int. J. Biol. Macromol. 99, 506 (2017). doi: 10.1016/j.ijbiomac.2017.03.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Suman Singh
    • 1
  • Kirtiraj K. Gaikwad
    • 1
  • Myungho Lee
    • 1
  • Youn Suk Lee
    • 1
  1. 1.Department of PackagingYonsei UniversityWonjuSouth Korea

Personalised recommendations