Physicochemical and rheological properties of mucilage extracted from Opuntia ficus indica (L. Miller). Comparative study with guar gum and xanthan gum

  • Claudia Quinzio
  • Carolina Ayunta
  • Matías Alancay
  • Mishima Beatriz López de 
  • Laura Iturriaga
Original Paper


The physicochemical and rheological properties of aqueous solutions of the mucilage isolated from Opuntia ficus indica (L. Mill) at different concentration (0.5, 1, 1.5 and 4.5% w/v) were examined. The intrinsic viscosity [η] found for precipitate mucilage (PM) and dialyzed mucilage (DM) were 22.6 and 15.3 dl/g respectively. Electrophoretic measurements showed that the zeta potential of PM and DM was negative in all the pH range studied. PM reduced the surface tension of water and was concentration dependent. The surface activity of PM (57 mN/m) was similar to that of guar gum (55 mN/m) and xanthan gum (52 mN/m) at 1.5% (w/v) concentration. A non-Newtonian shear-thinning behavior was observed. The Ostwald–de Waele model successfully correlated the viscosity–shear rate. At equal hydrocolloid concentration, the consistency coefficients (k) of mucilage solutions were lower than those of guar gum (GG) and xanthan gum (XG). However, the consistency coefficient of a mucilage solution at 4.5% (w/v) (20.9 Pa s) was in the same order as that shown by GG at 1.5% (w/v) (28.8 Pa s) aqueous solution. No effects of pH and ionic strength on the viscosity of PM and DM were observed. The mechanical spectra showed a crossover point between G′ and G″ at low mucilage concentrations of 0.5 and 1% (w/v), exhibiting higher relaxation time than GG. The more concentrated solutions of PM and DM (1.5 and 4.5% w/v) displayed a predominant elastic behavior and did not meet the Cox-Merz rule, similarly to GX. The more concentrated solutions of PM and DM did not meet the Cox-Merz rule. This behavior would suggest the formation of colloidal aggregates.


Mucilage Physicochemical characterization Rheological properties pH Ionic strength Viscosity 



The funding was provided by Universidad Nacional de Santiago del Estero Consejo de Investigaciones Científicas y Tecnológicas.


  1. 1.
    J. Ochoa, Aspects of Opuntia cultivation and post-harvest handling in South America. In International Workshop on Promotion of minor Fruits Crops: Cactus Pear. (University of Sassari, Sassari, Italy and FAO, Roma, 1997)Google Scholar
  2. 2.
    J. Ochoa, in Principales características de las distintas variedades de tuna (Opuntia spp.) de la República Argentina, ed. by P. Inglese, A. Nefzaoui (FAO International Technical Cooperation Network on Cactus pear, Cactusnet Newsletter, 2003)Google Scholar
  3. 3.
    C. Sáenz, E. Sepúlveda, B. Matsuhiro, Opuntia spp. Mucilage´S: a functional component with industrial perspectives. J. Arid Environ. 57, 275–290 (2004)CrossRefGoogle Scholar
  4. 4.
    D. McGarvie, H. Parolis, Methylation analysis of the mucilage of Opuntia ficus indica. Carbohydr. Res. 88, 305–314 (1981)CrossRefGoogle Scholar
  5. 5.
    S. Trachtenberg, A. Mayer, Composition and properties of Opuntia ficus-indica mucilage. Phytochemistry 20, 2665–2668 (1981)CrossRefGoogle Scholar
  6. 6.
    S. Nobel, J. Cavalier, J. Andrade, Mucilage in cacti its apoplastic capacitance associated solutes, and influence on tissue water relation. J. Exp. Bot. 43, 641–648 (1992)CrossRefGoogle Scholar
  7. 7.
    E. Amin, O. Awad, M. El-Sayed, The mucilage of Opuntia ficus-indica Mill. Carbohydr. Res. 15, 159–161 (1970)CrossRefGoogle Scholar
  8. 8.
    B. Paulsen, P. Lund, Water-soluble polysaccharides of Opuntia ficus-indica CV “Bubank’s spineless”. Phytochemistry 18, 569–571 (1979)CrossRefGoogle Scholar
  9. 9.
    D. Trombetta, C. Puglia, D. Perria, A. Licata, S. Pergolizzi, E. Lauriano, F. Bonina, Effect of polysaccharides from Opuntia ficus indica (l.Mill) cladodes on the healing of dermal wounds in the rat. Phytomedicine 13, 335–352 (2006)CrossRefGoogle Scholar
  10. 10.
    M. Chaoucha, J. Hafsab, C. Rihouey, D. Le Cerfc, H. Majdoub, Depolymerization of polysaccharides from Opuntia ficus indica: antioxidant and antiglycated activities. Int J Biol Macromol 79, 779–786 (2015)CrossRefGoogle Scholar
  11. 11.
    G. Phillips, P. Williams, Handbook of Hydrocolloids. (Woodhead Publisier, Cambrige, 2000)Google Scholar
  12. 12.
    H. Majdoub, S. Roudesli, A. Deratani, Polysaccharides from prickly pear peel and nopals of Opuntia ficus-indica: extraction, characterization and polyelectrolyte behavior. Polym. Int. 50, 552–560 (2001)CrossRefGoogle Scholar
  13. 13.
    S. Trachtenberg, A. Mayer, Biophysical properties of Opuntia ficus-indica mucilage. Phytochemistry 21, 2835–2843 (1982)CrossRefGoogle Scholar
  14. 14.
    AOAC, Association of Official Analytical Chemists, Official Methods of Analysis. Association of Official Analytical Chemists. (Arlington, Virginia, 1995)Google Scholar
  15. 15.
    V. Abraján, Efecto del método de extracción en las características químicas y físicas del mucílago del nopal (Opuntia ficus-indica) y estudio de su aplicación como recubrimiento comestible. (Universidad Politécnica de Valencia, Valencia, España, 2004)Google Scholar
  16. 16.
    M. Izydorczyk, C. Biliaderis, W. Bushuk, Physical properties of water soluble pentosanes from different wheat varieties. Cereal Chem. 68, 145–150 (1991)Google Scholar
  17. 17.
    A. Cárdenas, L. Higuera-Ciapara, F. Goycoolea, Rheology and aggregation of cactus (Opuntia ficus indica) mucilage in solution. J. Prof. Assoc. Catus Dev. 2, 152–157 (1997)Google Scholar
  18. 18.
    E. Sepúlveda, C. Sáenz, E. Aliaga, C. Aceituno, Extraction and characterization of mucilage in Opuntia spp. J. Arid. Environ. 68, 534–545 (2007)CrossRefGoogle Scholar
  19. 19.
    C. Sáenz, M. Vázquez, S. Trumper, C. Fluxá, Extracción y composición química del mucílago de Tuna (Opuntia ficus indica). (Acta II Congreso Internacional de Tuna y Cochinilla, Santiago de Chile, 1992) pp. 93–96Google Scholar
  20. 20.
    S. Trachtenberg, A. Mayer, Mucilage cells, calcium oxalate crystals and soluble calcium in Opuntia ficus indica. Ann. Bot. 50, 549–557 (1982)CrossRefGoogle Scholar
  21. 21.
    C. Aguilar-Chávez, Optimización del proceso de modificación del almidón de maíz ceroso por extrucción y el uso de mezclas de almidones modificados con mucílago de nopal para la encapsulación de aceite esencial de naranja empleando el secado por asperción. (Universidad Autónoma del Estado de Hidalgo, Paghuca de Soto, Mexico, 2007)Google Scholar
  22. 22.
    D. Anderson, in The amino acid components of some commercial gums, ed. by G.O. Philips, D. J. Wedlock, P.A. Williams. Gums and Stabilisers for the Food Industry, vol. 3 (Elsevier, London, 1986), pp. 79–86Google Scholar
  23. 23.
    Y. Wu, W. Cui, N. Eskin, H. Goff, An investigation of four comercial galactomannans on their emulsion and rheological properties. Food Res. Investig. 42, 1141–1146 (2009)CrossRefGoogle Scholar
  24. 24.
    G. Lopez, Descripción y transformación del ecosistema Opuntia Streptacantha Lemaire. (Universidad Autónoma Agraria Antonio Narro, Saltillo, México, 1977)Google Scholar
  25. 25.
    S. Novel, Nutrient levels in cacti in relation to nocturnal acid accumulation and growth. Am. J. Bot. 70, 1244–1253 (1983)CrossRefGoogle Scholar
  26. 26.
    V. Flores, H. Brauer, El Nopal (Opuntia ficus-indica) Variedad COPENA F1 Como Forraje (Revista, Nueva Época (Chapingo), Mèxico, 1977), p. 83Google Scholar
  27. 27.
    E. Dickinson, Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids 17, 25–39 (2003)CrossRefGoogle Scholar
  28. 28.
    S. Ross-Murphy, in Rheology of biopolymers solutions and gels, ed by E. Dickinson. New Physico-Chemical Techniques for the Characterization of Complex Food Systems (Blackie Academic and Professional/Chapman and Hal, Great Britain, 1995), pp. 139156Google Scholar
  29. 29.
    E. Azero, C. Andrade, Testing procedures for galactomannan purification. Polym. Test. 21, 551–556 (2002)CrossRefGoogle Scholar
  30. 30.
    H. Khouryieh, T. Herald, F. Aramouni, S. Alavi, Intrinsic viscosity and viscoelastic properties of xantan/guar mixtures in dilute solutions: effect of salt concentration on the polymer interactions. Food Res. Investig. 40, 883–893 (2007)CrossRefGoogle Scholar
  31. 31.
    Q. Wang, S. Cui, in Understanding the physical properties of food polysaccharides. Food Carbohydrates. Chemistry, Physical Properties and Applications (Steve Cui, New York, 2005)Google Scholar
  32. 32.
    A. Durand, Aqueous solutions of amphiphilic polysaccharides: concentration and temperature effect on viscosity. Eur. Polym. J. 43, 1744–1753 (2007)CrossRefGoogle Scholar
  33. 33.
    M. Delpech, F. Coutinho, M. Habile, Viscometry study of ethylene–cyclic olefin copolymers. Polym. Test 21, 411–415 (2002)CrossRefGoogle Scholar
  34. 34.
    L. Medina-Torres, E. Brito-De La Fuente, B. Torrestiana-Sànchez, R. Katthain, Rhelogical properties of the mucilage gum (Opuntia ficus indica). Food Hydrocolloids 14, 417–424 (2000)CrossRefGoogle Scholar
  35. 35.
    G. Robinson, S. Ross-Murphy, E. Morris, Viscosity-molecular weight relationships, intrinsic chain flexibility, and dynamic solution properties of guar galactomannan. Carbohydr. Res. 107, 17–32 (1982)CrossRefGoogle Scholar
  36. 36.
    Y. Kim, Q. Teng, I. Wicker, Action pattern of Valencia orange PME deesterification of high methoxyl pectin and characterization of modified pectins. Carbohydr. Res. 340, 2620–2629 (2005)CrossRefGoogle Scholar
  37. 37.
    T. Harnsilawat, R. Pongsawatmanit, D. McClements, Characterization of βlactoglobulin-sodium alginate interactions in aqueous solutions: a calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids 20, 577585 (2006)CrossRefGoogle Scholar
  38. 38.
    R. Lutz, A. Aserin, L. Wicker, N. Garti, Structure and physical properties of pectins with block-wise distribution of carboxylic acid groups. Food Hydrocolloids 23, 786–794 (2009)CrossRefGoogle Scholar
  39. 39.
    Y. Brummer, W. Cui, Q. Wang, Extraction, peurification and physicochemical characterization of fenugreek gum. Food Hydrocolloids 17, 229–236 (2003)CrossRefGoogle Scholar
  40. 40.
    P.R. Ellis, Q. Wang, P. Rayment, Y. Ren, S.B. Ross-Murphy, in Guar gum: agricultural and botanical aspects, physicochemical and nutritional properties, and its use in the development of functional foods, ed. by S. Sungsoo, M.L. Dreher. Handbook of Dietary Fiber: An Applied Approach (Marcel Dekker. Inc., New York, 2001)Google Scholar
  41. 41.
    R. Morris, Shear-thinning of ‘random coil’ polysaccharides: characterization by two parameters from a simple linear plot. Carbohydr. Polym. 13, 85–96 (1990)CrossRefGoogle Scholar
  42. 42.
    H. Majdoub, S. Roudesli, L. Picton, D. Le Cert, G. Muller, M. Grisel, Prickly pear nopals pectin from Opuntia ficus-indica physic-chemical study in dilute and semidilute solutions. Carbohydr. Polym. 46, 69–79 (2001)CrossRefGoogle Scholar
  43. 43.
    B. Urlacher, O. Noble, in Xanthan gum, ed. by B. Urlacher, O. Noble. Thickening and Gelling Agents for Food (Alan Imelson, London, 1997), pp. 284–311CrossRefGoogle Scholar
  44. 44.
    J. Corrales-García, C. Peña-Valdivina, Y. Razo-Martínez, M. Sánchez-Hernándeez, Acidity changes and pH-buffering capacity of nopalitos (Opuntia spp.). Postharvest Biol. Technol. 32, 169–174 (2004)CrossRefGoogle Scholar
  45. 45.
    G. Sworn, in Xanthan gum, ed. by G. W. Phillips. Handbook of Hydrocolloids (CRC Press, New York, 2000), pp. 103–115Google Scholar
  46. 46.
    P. William, G. Philips, in Introduction to food hydrocolloids, ed. by G. Phillips, P. Williams. Handbook of Hydrocolloids (Woodhead Publishing Limited, Cambridge, 2000), pp. 1–19Google Scholar
  47. 47.
    W. Wielinga, in Galactomannans, ed. by P. G. O. Philips. Handbook of Hydrocolloids (Woodhead Publishing Limited, Cambridge, 2009), pp. 41–65Google Scholar
  48. 48.
    J. Steffe, Rheological Methods in Food Process Engineering. (Freeman Press, East Lansing, 1996)Google Scholar
  49. 49.
    C. Macosko, Rheology Principles, Measurements and Applications. (Wiley-VCH, Inc., New York, 1994)Google Scholar
  50. 50.
    S. Ramachandran, S. Chen, F. Etzler, Rheological characterization of hydroxypropylcellulose gels. Drug Dev. Ind. Pharm. 25, 153–161 (1999)CrossRefGoogle Scholar
  51. 51.
    M. Oblonsek, S. Sostar-Turk, R. Lapasin, Rheological studies of concentrated guar gum. Rheological. Acta 42, 491–499 (2003)CrossRefGoogle Scholar
  52. 52.
    W. Sittikijyothin, D. Torres, M. Gonçalves, Modelling the rheological behavior selected gum solutions. Food Res. Int. 38, 111–119 (2005)CrossRefGoogle Scholar
  53. 53.
    F. Tadros, Correlation of viscoelastic properties of stable and flocculated suspensions with interparticle interactions. Adv. Colloid Interface Sci. 68, 97–200 (1996)CrossRefGoogle Scholar
  54. 54.
    G. Lorenzo, N. Zaritzky, A. Califano, Modeling rheological properties of low-in-fat o/w emulsions stabilized with xanthan/guar mixtures. Food Res. Int. 41, 487–494 (2008)CrossRefGoogle Scholar
  55. 55.
    A. Clark, S. Ross-Murphy, Structural and mechanical properties of biopolimer gels. Adv. Polym. Sci. 83, 57–192 (1987)CrossRefGoogle Scholar
  56. 56.
    L. Medina-Torres, E. Brito-De La Fuente, B. Torrestiana-Sanchez, S. Alonso, Mechanical properties of gels formed by mixture of mucilage gum (Opuntia ficusindica) and carrageenans. Carbohydrates 52, 142–150 (2003)Google Scholar
  57. 57.
    G. Doublier, J. Cuvelier, in Gums hydrocolloids: functional aspect, ed. by A. Eliasson. Carbohydrates in Food (Marcel Dekker, New York, 1996), pp. 283–318Google Scholar
  58. 58.
    M. Rao, H. Cooley, Rheology of tomato pastes in steady dynamic shear. J. Texture Stud. 12, 521–538 (1992)CrossRefGoogle Scholar
  59. 59.
    E. Miyoshi, K. Nishinari, Non-Newtonian flow behavior of gellan gum aqueous solution. Colloid. Polym. Sci. 277, 727–734 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Claudia Quinzio
    • 1
    • 2
  • Carolina Ayunta
    • 1
    • 2
  • Matías Alancay
    • 1
    • 2
  • Mishima Beatriz López de 
    • 1
    • 3
  • Laura Iturriaga
    • 1
    • 2
  1. 1.Research and Transfer Center of Santiago del Estero (CITSE, UNSE-CONICET) RN 9 Km 1125 Villa el ZanjónSantiago del EsteroArgentina
  2. 2.Institute of Food Science and TechnologyNational University of Santiago del EsteroSantiago del EsteroArgentina
  3. 3.Institute of Bionanotechnology (INBIONATEC, UNSE-CONICET)National University of Santiago de EsteroSantiago del EsteroArgentina

Personalised recommendations