Phytochemical evaluation, antioxidant properties and antibacterial activity of Iranian medicinal herb Galanthus transcaucasicus Fomin

  • Ehsan Karimi
  • Pooyan Mehrabanjoubani
  • Masoud Homayouni-Tabrizi
  • Ahmad Abdolzadeh
  • Mozhgan Soltani
Original Paper
  • 49 Downloads

Abstract

This study was performed to determine bioactive compounds such as flavonoid and phenolic contents by HPLC and gas chromatography–mass spectrophotometry (GC–MS) and evaluate their antioxidant and antibacterial activities in bulb, flower and shoot extracts of Galanthus transcaucasicus Fomin. The overall results indicated that shoot part contained higher amounts of phenolics and flavonoids compared to the bulb and flower with respective values of 4.45and 2.67 mg/g DW. Besides, HPLC analyses showed that the gallic acid and syringic acid were the major phenolic contents in bulb, flower and shoot of G. transcaucasicus extracts. Apart from that, naringin was the main flavonoid compounds in bulb, flower and shoot. Volatile metabolites were detected by GC–MS screening that indicated 2-furancarboxaldehyde, 2,3-butanediol, and acetic acid as the main compounds in the bulb, flower and shoot extracts. The results of antioxidant activity test demonstrated that shoot extracts of G. transcaucasicus exhibited higher antioxidant activities compare to bulb and flower. Furthermore, the shoot, flower and bulb extracts showed high, moderate and weak antibacterial activities against common human and food borne pathogenic bacteria, respectively. The overall results revealed that various phytochemicals and bioactive compound in different parts of G. transcaucasicus could be considered as a source of putative antioxidant and antibacterial properties that could be used as biopreservative in food and cosmetic industries.

Keywords

Galanthus transcaucasicus Phenolics Flavonoids Bioactive volatile Antibacterial effect 

Notes

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest.

References

  1. 1.
    T. Seal, Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves. Sonchus arvensis and Oenanthe linearis of North-Eastern region in India. J. App. Pharm. Sci 6, 157–166 (2016)CrossRefGoogle Scholar
  2. 2.
    N.V. Thomas, S.K. Kim, Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ. Toxicol. Pharmacol. 32, 325–335 (2011)CrossRefGoogle Scholar
  3. 3.
    N. Lakshmi, Cytotaxonomical studies in eight genera of Amaryllidaceae. Cytologia 45, 663–673 (1980)CrossRefGoogle Scholar
  4. 4.
    N. Unver, New skeletons and new concepts in Amaryllidaceae alkaloids. Phytochem. Rev. 6, 125–135 (2007)CrossRefGoogle Scholar
  5. 5.
    E.A. Adewusi, G. Fouche, V. Steenkamp, Cytotoxicity and acetylcholinesterase inhibitory activity of an isolated crinine alkaloid from Boophane disticha (Amaryllidaceae). J. Ethnopharmacol 143, 572–578 (2012)CrossRefGoogle Scholar
  6. 6.
    E.A. Adewusi, V. Steenkamp, In vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from southern Africa. Asian Pac. J. Trop. Med. 4, 829–835 (2011)CrossRefGoogle Scholar
  7. 7.
    N. Rokbeni, Y. M’rabet, S. Cluzet, T. Richard, S. Krisa, M. Boussaid, A. Boulila, Determination of phenolic composition and antioxidant activities of Pancratium maritimum L. from Tunisia. Ind. Crops Prod. 94, 505–513 (2016)CrossRefGoogle Scholar
  8. 8.
    X. Li, M. Lu, D. Tang, Y. Shi, Composition of carotenoids and flavonoids in Narcissus cultivars and their relationship with flower color. PLoS ONE. 10, e0142074 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Korkut, Research on variabilities in some important characters of Galanthus elwesii hook. Var. Elwesii grow under natural conditions. Acta Hortic 355, 189–194 (1994)CrossRefGoogle Scholar
  10. 10.
    A.P. Davis, J.R. Barnett, The leaf anatomy of the genus Galanthus L. (Amaryllidaceae J. St.-Hil.). Bot. J. Linn. Soc 123, 333–352 (1997)Google Scholar
  11. 11.
    E.J. Damme, H. Kaku, F. Perini, I.J. Goldstein, B. Peeters, F. Yagi, B. Decock, W.J. Peumans, Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis L.) lectin. Eur. J. Biochem. 202, 23–30 (1991)CrossRefGoogle Scholar
  12. 12.
    F. Yousefbeyk, B. Azadi, G. Amin, M. Salehi Sormaghi, M. Amini, M. Sharifzadeh, Phytochemical investigation of Galanthus transcaucasicus Fomin, as a source of isoquinoline alkaloids. Planta Med. 77, PG33 (2011)Google Scholar
  13. 13.
    M. Babashpour-Asl, H. Zakizadeh, H. Nazemiyeh, A. Motallebi-Azar, In vitro micropropagation and alkaloid production of Galanthus transcaucasicus Fomin. Pharm. Sci. 22, 267–271 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Crozier, M.E. Lean, M.S. McDonald, C. Black, Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery. J. Agric. Food Chem. 45, 590–595 (1997)CrossRefGoogle Scholar
  15. 15.
    R. Hendra, S. Ahmad, E. Oskoueian, A. Sukari, M.Y. Shukor, Antioxidant, anti-inflammatory and cytotoxicity of Phaleria macrocarpa (Boerl.) Scheff fruit. BMC Complement. Altern. Med. 11, 1 (2011)CrossRefGoogle Scholar
  16. 16.
    H.I. Ismail, K.W. Chan, A.A. Mariod, M. Ismail, Phenolic content and antioxidant activity of cantaloupe (Cucumis melo) methanolic extracts. Food Chem. 119, 643–647 (2010)CrossRefGoogle Scholar
  17. 17.
    E. Karimi, H.Z. Jaafar, A. Ghasemzadeh, M. Ebrahimi, Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth. Biol. Res. 48, 9 (2015)CrossRefGoogle Scholar
  18. 18.
    M.A. Hossain, A. Rahman, Chemical composition of bioactive compounds by GC–MS screening and anti-fungal properties of the crude extracts of cabbage samples. Asian J. Biotechnol. 3, 68–76 (2011)CrossRefGoogle Scholar
  19. 19.
    I. Gulcin, I.G. Sat, S. Beydemir, M. Elmastas, O.I. Kufrevioglu, Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb.) buds and lavender (Lavandula stoechas L.). Food Chem. 3, 393–400 (2004)CrossRefGoogle Scholar
  20. 20.
    G.C. Yen, P.D. Duh, Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J. Agric. Food Chem. 42, 629–632 (1994)CrossRefGoogle Scholar
  21. 21.
    E. Karimi, E. Oskoueian, R. Hendra, H.Z. Jaafar, Evaluation of Crocus sativus L. stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules 5, 6244–6256 (2010)CrossRefGoogle Scholar
  22. 22.
    G.C. Yen, H.Y. Chen, Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 43, 27–32 (1995)CrossRefGoogle Scholar
  23. 23.
    O. Boussaada, J. Chriaa, R. Nabli, S. Ammar, D. Saidana, M.A. Mahjoub, I. Chraeif, A.N. Helal, Z. Mighri, Antimicrobial and antioxidant activities of methanol extracts of Evax pygmaea (Asteraceae) growing wild in Tunisia. World J. Microbiol. Biotechnol. 24, 1289–1296 (2008)CrossRefGoogle Scholar
  24. 24.
    S. Khodadadi, T. Nejadsattari, A. Naqinezhad, M.A. Ebrahimzadeh, Diversity in antioxidant properties and mineral contents of Allium paradoxum in the Hyrcanian forests, Northern Iran. Biodiversitas 16, 281–287 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Nikolova, R. Gevrenova, Determination of phenolic acids in amaryllidaceae species by high performance liquid chromatography. Pharm. Biol. 43, 289–291 (2005)CrossRefGoogle Scholar
  26. 26.
    D. Prakash, B.N. Singh, G. Upadhyay, Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chem. 102, 1389–1393 (2007)CrossRefGoogle Scholar
  27. 27.
    O. Ceylan, H. Alıc, Antibiofilm, antioxidant, antimutagenic activities and phenolic compounds of Allium orientale BOISS. Braz. Arch. Biol. Technnol. 58, 935–943 (2015)CrossRefGoogle Scholar
  28. 28.
    L. Jin, Y. Zhang, L. Yan, Y. Guo, L. Niu, Phenolic compounds and antioxidant activity of bulb extracts of six Lilium species native to China. Molecules 17, 9361–9378 (2012)CrossRefGoogle Scholar
  29. 29.
    R.M. Perez-Gregorio, M.S. García-Falcón, J. Simal-Gándara, A.S. Rodrigues, D.P. Almeida, Identification and quantification of flavonoids in traditional cultivars of red and white onions at harvest. J. Food Comp. Anal. 23, 592–598 (2010)CrossRefGoogle Scholar
  30. 30.
    M. Daglia, Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 23, 174–181 (2012)CrossRefGoogle Scholar
  31. 31.
    T.P.T. Cushnie, A.J. Lamb, Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26, 343–356 (2005)CrossRefGoogle Scholar
  32. 32.
    A.I. Nazer, A. Kobilinsky, J.L. Tholozana, F. Dubois-Brissonneta, Combinations of food antimicrobials at low levels to inhibit the growth of Salmonella sv. Typhimurium: a synergistic effect? Food Micobiol. 22, 391–398 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and Biophysics, Mashhad BranchIslamic Azad UniversityMashhadIran
  2. 2.Department of Basic Science, Faculty of Crop ScienceSari Agricultural Sciences and Natural Resources UniversitySariIran
  3. 3.Department of Biology, Faculty of ScienceGolestan UniversityGorganIran
  4. 4.Department of Biology, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations