Thermal, structural and rheological characterization of protein isolate from sesame meal

  • Charanjiv Singh Saini
  • Harish Kumar Sharma
  • Loveleen Sharma
Original Paper
  • 39 Downloads

Abstract

Sesame protein can be considered as a good source of protein due to high content of methionine present in it. In this study, sesame protein isolate (SPI) from sesame meal was isolated and its thermal, structural, and rheological properties were evaluated. X-ray diffraction exhibited two diffraction peaks, one at 10° (small intensity) and other at 19.5° (high intensity). Thermo-gravimetric analysis showed complete degradation of protein on increase of temperature to more than 450 °C. In differential scanning calorimetry, onset temperature for SPI started at 176.0 °C and peak denaturation temperature for SPI was observed at 210 °C. FTIR of SPI indicated the presence of Amide A, Amide B and Amide I to V bands. SPI exhibited shear thinning behaviour characterized with viscosity decrease with increase in shear rate. Minimum viscosity was observed when shear rate varied from 700 to 800 s−1. Visco-elastic behaviour of SPI gel was observed during temperature sweep test, with G′ dominating G″ throughout the test. Overall, observed parameters showed that sesame protein exhibit good thermal stability and appropriate rheological properties necessary for industrial application and hence can be considered as an efficient source of protein supplemented foods.

Keywords

Sesame meal Protein isolate FTIR Diffraction peaks Thermal property Rheology 

References

  1. 1.
    E. Onsaard, P. Pomamud, P. Audtum, Asian J. Food Agro Ind. 3, 420 (2010)Google Scholar
  2. 2.
    J.C. Wang, J.E. Kinsella, J. Food Sci. 41, 498 (1976)CrossRefGoogle Scholar
  3. 3.
    J.E. Kinsella, J. Am. Oil Chem. Soc. 56, 242 (1979)CrossRefGoogle Scholar
  4. 4.
    L.A. Johnson, T.M. Suleiman, E.W. Lusas, J. Am. Oil Chem. Soc. 56, 463 (1979)CrossRefGoogle Scholar
  5. 5.
    U.E. Inyang, A.O. Iduh, J. Am. Oil Chem. Soc. 73, 1663 (1996)CrossRefGoogle Scholar
  6. 6.
    M. Zaghloul, V. Prakash, Nah 46, 364 (2002)CrossRefGoogle Scholar
  7. 7.
    E.K. Khalid, E.E. Babiker, A.H.E.L. Tinay, Food Chem. 82, 361 (2003)CrossRefGoogle Scholar
  8. 8.
    A.P. Gandhi, J. Srivastava, ASEAN Food J. 14, 175 (2007)Google Scholar
  9. 9.
    G. Lopez, I. Flores, A. Galvez, M. Quiasco, A. Farres, LWT-Food Sci. Technol. 36, 67 (2003)CrossRefGoogle Scholar
  10. 10.
    T.A. El-Adawy, Plant Foods Hum. Nutr. 48, 311 (1995)CrossRefGoogle Scholar
  11. 11.
    A. Achouri, V. Nail, J.I. Boye, Food Res. Int. 46, 360 (2012)CrossRefGoogle Scholar
  12. 12.
    K.S. Kumar, K. Ganesan, K. Selvaraj, P.V.S. Rao, Food Chem. 153, 353 (2014)CrossRefGoogle Scholar
  13. 13.
    M.,. Joshi, B. Adhikari, P. Aldred, J.F. Panozzo, S. Kasapis, Food Chem. 129, 1513 (2011)CrossRefGoogle Scholar
  14. 14.
    L. Sharma, C. Singh, H.K. Sharma, J. Food Meas. Charact. 10, 526 (2016)Google Scholar
  15. 15.
    M. Kaur, N. Singh, Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars. Food Chem. 102, 366 (2007)CrossRefGoogle Scholar
  16. 16.
    Q. Wang, Y. Du, X. Hu, J. Yang, L. Fan, T. Feng, J. Appl. Polym. Sci. 101, 425 (2006)CrossRefGoogle Scholar
  17. 17.
    V.Y. Ma, V.R. Harwelkar, Adv. Food Nutr. Res. 35, 317 (1991)CrossRefGoogle Scholar
  18. 18.
    S.D. Arntfield, E.D. Murray, Can. Inst. Food Sci. Technol. 14, 289 (1981)CrossRefGoogle Scholar
  19. 19.
    C.G. Biliaderis, Food Chem. 10, 39 (1983)CrossRefGoogle Scholar
  20. 20.
    E.C.Y Li-Chan, C.Y. Ma, Food Chem. 77, 495 (2002)CrossRefGoogle Scholar
  21. 21.
    R. Horax, N.S. Hettiarachchy, P. Chen, M. Jalaluddin, J. Food Sci. 69, 119 (2004)Google Scholar
  22. 22.
    S.N. Swain, K.K. Rao, P.L. Nayak, J. Appl. Polym. Sci. 93, 2590 (2004)CrossRefGoogle Scholar
  23. 23.
    S.K. Sahoo, P.R. Das, R.M. Nanda, H. Dash, S.P. Das, P.L. Nayak, Afr. J. Sci. Res. 1, 64 (2011)Google Scholar
  24. 24.
    A. Barth, C. Zscharp, Q. Rev. Biophys. 35(4), 369–430 (2002)CrossRefGoogle Scholar
  25. 25.
    S. Krimm, J. Bandekar, Adv. Protein Chem. 38, 181 (1986)CrossRefGoogle Scholar
  26. 26.
    Y. Abe, S. Krimm. Biopol 11, 1817 (1972)CrossRefGoogle Scholar
  27. 27.
    G. Drochioiuand, A. Adochitei, Rev. Roum. Chim. 56, 783 (2011)Google Scholar
  28. 28.
    A. Ionescu, I. Aprodu, G. Gurau, I. Banu, Chem. Chem Eng. Biotechnol. Food Ind. 12, 387 (2011)Google Scholar
  29. 29.
    X.D. Sun, S.D. Arntfield, J. Food Eng. Technol. 105, 577–582 (2011)CrossRefGoogle Scholar
  30. 30.
    R.N. Adsule, S.S. Kadam, Proteins, in Handbook of World Food Legumes, ed. by D.K. Salunkhe, S.S. Kadam (CRC Press Inc., Florida, 1989), pp. 75–97Google Scholar
  31. 31.
    D.L. Doublier, in Viscoelastic Properties of Foods, ed. by M.A. Rao, J.F. Steffe (Elsevier Applied Science, New York, 1992), pp. 371–434Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Charanjiv Singh Saini
    • 1
  • Harish Kumar Sharma
    • 1
  • Loveleen Sharma
    • 1
  1. 1.Department of Food Engineering and TechnologySant Longowal Institute of Engineering and TechnologySangrurIndia

Personalised recommendations