Extraction and characterization of phenolic content from purple and black rice (Oryza sativa L) bran and its antioxidant activity

Original Paper
  • 131 Downloads

Abstract

The extraction process of phenolic contents from black and purple rice bran in acetone, ethanol, and water, was optimized using rotatable central composite design (RCCD). Results of the study suggested that ethanol was the most efficient solvent to extract total phenolic content (TPC) from rice bran. The optimal condition for extraction of TPC from purple rice bran was, 43.74% (v/v) ethanol concentration, 37.5 °C temperature, 22.5 min extraction time and 8.75 (mL/g) solvent to solid ratio. Whereas, for black rice bran, except solvent to solid ratio (8.80 mL/g), the optimal condition was same as purple rice bran. TPC was found to be higher in purple rice bran extract than black rice bran extracts at optimum condition. RCCD data was successfully used to predict the extraction yield using the artificial neural network. The purple rice bran extract shows a promisingly higher amount of phytochemical content in term of TPC, flavonoid, anthocyanins and phenolic acid than black rice bran extract. The purple rice bran extract also showed the higher antioxidant activity than black rice bran extract.

Keywords

Rice bran Extraction Phenolic compounds Anthocyanin Antioxidant activity 

Notes

Acknowledgements

The authors are grateful to the Indian Institute of Technology Guwahati and Tezpur University for technical support.

Supplementary material

11694_2017_9645_MOESM1_ESM.docx (47 kb)
Supplementary material 1 (DOCX 46 KB)

References

  1. 1.
    A. Moongngarm, N. Daomukda, S. Khumpika, APCBEE Procedia 2, 73 (2012)CrossRefGoogle Scholar
  2. 2.
    F.F. Paiva, N.L. Vanier, J.D.J. Berrios, J. Pan, F. de Almeida Villanova, G. Takeoka, M.C. Elias, J. Food Comp. Anal. 35, 10 (2014)CrossRefGoogle Scholar
  3. 3.
    H. Zhang, Y. Shao, J. Bao, T. Beta, Food Chem. 172, 630 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Bashash, N. Zamindar, M. cBolandi, Food Measure 8, 213 (2014)CrossRefGoogle Scholar
  5. 5.
    G.L. Spigno, D.M. Tramelli, De Faveri, J. Food Eng. 81, 200 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Sahin, R. Samlı, Ultrason. Sonochem. 20, 595 (2013)CrossRefGoogle Scholar
  7. 7.
    M.Y. Chen, S.Yu.. Zhao, Food Chem. 172, 543 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Das, A.K. Golder, C. Das, Ind. Crops Prod 65, 415 (2015)CrossRefGoogle Scholar
  9. 9.
    V. Kumar, H.K. Sharma, Food Measure 11, 704 (2017)CrossRefGoogle Scholar
  10. 10.
    T. Laokuldilok, C.F. Shoemaker, S. Jongkaewwattana, V. Tulyathan, J. Agric. Food Chem. 59, 193 (2011)CrossRefGoogle Scholar
  11. 11.
    R. Sompong, S. Siebenhandl-Ehn, G. Linsberger-Martin, E. Berghofer, Food Chem. 124, 132 (2011)CrossRefGoogle Scholar
  12. 12.
    D.T. Santos, P.C. Veggi, M.A.A. Meireles, J. Food Eng. 101, 23 (2010)CrossRefGoogle Scholar
  13. 13.
    A.D. Assefa, Y.S. Keum, Food Measure 11, 576 (2017)CrossRefGoogle Scholar
  14. 14.
    B. Harakotr, B. Suriharn, R. Tangwongchai, M.P. Scott, K. Lertrat, Food Chem. 164, 510 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Zhishen, T. Mengcheng, W. Jianming, Food Chem. 64, 555 (1999)CrossRefGoogle Scholar
  16. 16.
    D. Samyor, S.C. Deka, A.B. Das, J. Food Process. Preserv. 40, 174 (2016)CrossRefGoogle Scholar
  17. 17.
    L.L. Canabady-Rochelle, C. Harscoat-Schiavo, V. Kessler, A. Aymes, F. Fournier, J.M. Girardet, Food Chem. 183, 129 (2015)CrossRefGoogle Scholar
  18. 18.
    G. Spigno, D.M. De Faveri, J. Food Eng. 93, 210 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Mokrani, K. Madani, Sep. Purif. Technol. 162, 68 (2016)CrossRefGoogle Scholar
  20. 20.
    G.B. Celli, A. Ghanem, M.S.L. Brooks, Ultrason. Sonochem. 27, 449 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Liu, S. Wei, M. Liao, Ind. Crops Prod. 49, 837 (2013)CrossRefGoogle Scholar
  22. 22.
    Z.S. Zhang, L.J. Wang, D. Li, S.S. Jiao, X.D. Chen, Z.H. Mao, Sep. Purif. Technol. 62, 192 (2008)CrossRefGoogle Scholar
  23. 23.
    R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th edn. (Wiley, Hoboken, 2016), p. 728Google Scholar
  24. 24.
    X. Wang, Y. Wu, G. Chen, W. Yue, Q. Liang, Q. Wu, Ultrason. Sonochem. 20, 846 (2013)CrossRefGoogle Scholar
  25. 25.
    L. Wang, C.L. Weller, Trends Food Sci. Technol. 17, 300 (2006)CrossRefGoogle Scholar
  26. 26.
    J. Li, Y.G. Zu, Y.J. Fu, Y.C. Yang, S.M. Li, Z.N. Li, M. Wink, Innov. Food Sci. Emerg. Technol. 11, 637 (2010)CrossRefGoogle Scholar
  27. 27.
    Y. Chen, M.Y. Xie, X.F. Gong, J. Food Eng. 81, 162 (2007)CrossRefGoogle Scholar
  28. 28.
    W. Xiao, L. Han, B. Shi, Sep. Purif. Technol. 62, 614 (2008)CrossRefGoogle Scholar
  29. 29.
    M. Miyazawa, T. Oshima, K. Koshio, Y. Itsuzaki, J. Anzai, J. Agric. Food Chem. 51, 6953 (2003)CrossRefGoogle Scholar
  30. 30.
    I.C. Ferreira, P. Baptista, M. Vilas-Boas, L. Barros, Food Chem. 100, 1511 (2007)CrossRefGoogle Scholar
  31. 31.
    M. Pazdzioch-Czochra, A. Widenska, Anal. Chim. Acta 452, 177 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Food Engineering and TechnologyTezpur UniversityTezpurIndia
  2. 2.Department of Chemical EngineeringIndian Institute of TechnologyGuwahatiIndia

Personalised recommendations