Characterization and effect of extraction solvents on the yield and total phenolic content from Vernonia amygdalina leaves

  • Oluwaseun Ruth Alara
  • Nour Hamid Abdurahman
  • Siti Kholijah Abdul Mudalip
  • Olusegun Abayomi Olalere
Original Paper

Abstract

In this study, the effects of extraction solvents on the yield and total phenolic content of Vernonia amygdalina leaf were examined. The considered solvents were water, 20% v/v ethanol, 40% v/v ethanol, 60% v/v ethanol, 80% v/v ethanol, and 100% v/v ethanol using Soxhlet extraction technique. Highest extraction yield (19.45 ± 0.22% g/g) and total phenolic content (96.25 ± 2.52 mg GAE/g d.w.) were achieved using 60% v/v aqueous ethanol solution. In addition, there exist a significant correlation between total phenolic content and antioxidant activities using DPPH (R2 = 0.9397, p < 0.05) and ABTS scavenging activity (R2 = 0.7700, p < 0.05). More so, the FTIR analysis confirmed the presence of functional groups attributed to its antioxidant property. There was a significant damage in the cell wall of V. amygdalina leaf after extracted with 60% v/v ethanol solution. Therefore, V. amygdalina leaf can be a good source of antioxidants.

Keywords

Vernonia amygdalina Solvent Antioxidant Extraction Phenolic Characterization 

Notes

Acknowledgements

The authors wish to acknowledge the financial support of Universiti Malaysia Pahang through the soft grant RDU160325.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest on this study.

References

  1. 1.
    O.R. Alara, J.A. Alara, O.A. Olalere, Review on Phaleria macrocarpa pharmacological and phytochemical properties. Drug Des 5, 1–5 (2016)Google Scholar
  2. 2.
    O.R. Alara, S.K. Abdul Mudalip, O.A. Olalere, Optimization of mangiferin extrated from Phaleria macrocarpa fruits using response surface methodology. J. Appl. Res. Med. Aromat. Plants 5, 82–87 (2017)Google Scholar
  3. 3.
    Y. Xiong, L. Rao, L. Xiong, Q. Ai, X. Wu, Effects of extraction solvent on polyphenolic contents and antioxidant activities of Osmanthus fragrans’ seed. Proc.-2012 Int. Conf. Biomed. Eng. Biotechnol. 217–220 (2012)Google Scholar
  4. 4.
    K.M. Ramkumar, P. Rajaguru, R. Ananthan, Antimicrobial properties and phytochemical constituents of an antidiabetic plant Gymnema montanum. Food Chem 1, 67–71 (2007)Google Scholar
  5. 5.
    S.K. Yeap, W.Y. Ho, B.K. Beh, W.S. Liang, H. Ky, A. Hadi, N. Yousr, N.B. Alitheen, Vernonia amygdalina, an ethnomedical used green vegetable with multiple bio-activities. J. Med. Plants Res 4, 2787–2812 (2010)Google Scholar
  6. 6.
    B. Adaramola, A. Onigbinde, Effect of extraction solvent on the phenolic content, flavonoid content and antioxidant capacity of clove bud. IOSR J. Pharm. Biol. Sci 11, 33–38 (2016)Google Scholar
  7. 7.
    N.J. Toyang, R. Verpoorte, A review of the medicinal potentials of plants of the genus Vernonia (Asteraceae). J. Ethnopharmacol. 146, 681–723 (2013)CrossRefGoogle Scholar
  8. 8.
    G.O. Igile, W. Oleszek, M. Jurzysta, S. Burda, M. Fafunso, A.A. Fasanmade, Flavonoids from Vernonia amygdalina and their antioxidant activities. J. Agric. Food Chem. 42, 2445–2448 (1994)CrossRefGoogle Scholar
  9. 9.
    F. Dahmounea, G. Spignob, K. Moussia, H. Reminia, A. Cherbalc, K. Madania, Pistacia lentiscus leaves as a source of phenolic compounds: microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind. Crops Prod. 61, 31–40 (2014)CrossRefGoogle Scholar
  10. 10.
    X. Luo, Y. Jiang, F.R. Fronczek, C. Lin, E.B. Izevbigie, K.S. Lee, Isolation and structure determination of a sesquiterpene lactone (vernodalinol) from Vernonia amygdalina extracts. Pharm. Biol. 49, 464–470 (2011)CrossRefGoogle Scholar
  11. 11.
    K. Oriakhi, E.I. Oikeh, N. Ezeugwu, O. Anoliefo, O. Aguebor, E.S. Omoregie, Comparative antioxidant activities of extracts of Vernonia amygdalina and Ocimum gratissimum leaves. J. Agric. Sci. 6, 13–20 (2013)Google Scholar
  12. 12.
    E.O. Farombi, O. Owoeye, Antioxidative and chemopreventive properties of Vernonia amygdalina and Garcinia biflavonoid. Int. J. Environ. Res. Public Health 8, 2533–2555 (2011)CrossRefGoogle Scholar
  13. 13.
    U. Zlotek, S. Mikulska, M. Nagajek, M. Swieca, The effect of different solvents and number of extraction steps on the polyphenol content and antioxidant capacity of basil leaves (Ocimum basilicum L.) extracts. Saudi. J. Biol. Sci. 23, 628–633 (2016)CrossRefGoogle Scholar
  14. 14.
    O.R. Alara, N.H. Abdurahman, O.A. Olalere, Ethanolic extraction of flavonoids, phenolics and antioxidants from Vernonia amygdalina leaf using two-level factorial design. J. King Saud Univ. Sci. (2017). doi. 10.1016/j.jksus.2017.08.001 Google Scholar
  15. 15.
    G.A. Ayoola, H.A.B. Coker, S.A. Adesegun, A.A. Adepoju-Bello, K. Obaweya, E.C. Ezennia, T.O. Atangbayila, Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Trop. J. Pharm. Res. 7, 1019–1024 (2008)Google Scholar
  16. 16.
    M.N. Alam, N.J. Bristi, M. Rafiquzzaman, Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 21, 143–152 (2013)CrossRefGoogle Scholar
  17. 17.
    K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-zevallos, D. Hawkins, Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19, 669–675 (2006)CrossRefGoogle Scholar
  18. 18.
    R. Ashokkumar, M. Ramaswamy, Phytochemical screening by FTIR spectroscopic analysis of leaf extracts of selected Indian medicinal plants. Int. J. Curr. Microbiol. Appl. Sci. 3, 395–406 (2014)Google Scholar
  19. 19.
    Q.D. Doa, A.E. Angkawijaya, P.L. Tran-Nguyena, L.H. Huynhb, F.E. Soetaredjo, S. Ismadji, Y.-H. Ju, Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 22, 296–302 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Dhobi, V. Mandal, S. Hemalatha, Optimization of microwave assisted extraction of bioactive flavonolignan - silybinin. J. Chem. Metrol. 3, 13–23 (2009)Google Scholar
  21. 21.
    L. Tomsone, Z. Kruma, R. Galoburda, Comparison of different solvents and extraction methods for isolation of phenolic compounds from horseradish roots. Int. Sch. Sci. Res. Innov. 6, 1164–1169 (2012)Google Scholar
  22. 22.
    G. Hithamani, K. Ramalakshmi, Microwave assisted extraction of phenolics from Origanum vulgare. Int. Invent. J. Agric. Soil Sci. 1, 7–12 (2013)Google Scholar
  23. 23.
    F. Dahmoune, B. Nayak, K. Moussi, H. Remini, K. Madani, Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem. 166, 585–595 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Faculty of Chemical Engineering & Natural ResourcesUniversiti Malaysia PahangGambangMalaysia

Personalised recommendations