Post harvest processing, cooking and textural properties of horse gram (Mycrotyloma uniflorum) varieties

  • Rahul Vashishth
  • Anil Dutt Semwal
  • M. Pal Murugan
  • Gopal Kumar Sharma
Original Paper
  • 66 Downloads

Abstract

Four Horse gram varieties GPM-6, Hebbal Hurrali-1, BHK and Paiyur-2 from southern region of India were studied for various physical, mechanical, aerodynamical and cooking properties. These parameters were often utilized to design and develop more economical and efficient agricultural produce processing machinery and equipment especially during post-harvest operations and for consumer accepatance. Length, width, thickness and volume of the horse gram varieties were in the range of 5.44–6.01, 3.99–4.09, 2.21–2.29 and 25.57–29.48mm3, respectively. Moisture content, thousand kernel weight, bulk density, true density, and porosity were in the range of 10.13–11.63%, 30.32–32.98 g, 810–901, 1250–1426 kg/m3, 34.92–36.87% respectively. Angle of repose ranged from 22.73 to 25.42°. The shape of individual grain was ellipsoidal. The experimental terminal velocity was greater for all varieties in comparison to its theoretical terminal velocity. Results showed that the soaking prior to cooking leads to reduction in cooking time for the horse gram varieties. A strong significant negative correlation of soaking duration with cooking time (r = −0.912, p < 0.01) was observed. Horse gram cultivars with low seed weight had higher cooking time and higher water absorption capacity. Among the varieties studied, GPM-6 was found to be the best followed by Hebbal Hurrali in terms of lower cooking time, higher water absorption of soaked seeds and low hardness of cooked seeds.

Keywords

Post harvest processing Agricultural produce Experimental velocity Sphericity Porosity Angle of repose Texture 

Abbrevations

GPM-6, BHK, Hebbal Hurrali-1, Payiur-2

Horse gram varieties

AOAC

Association of Official Analytical Chemist

Dg

Geometric mean diameter

Da

Arithmetic mean diameter

De

Equivalent mean diameter

L

Length

W

Weight

T

Thickness

V

Volume

Φ

Sphericity

Ra

Aspect ratio

ρt

True density

ρt

Bulk density

Ar

Angle of repose

Hc

Height of cone

Dc

Diameter of cone

μ

Coefficient of friction

μa

Dynamic viscosity of air

α

Angle of inclination

Vt

Theoretical terminal velocity of air

Ve

Experimental terminal velocity of air

Z

Shape factor

C

Drag coefficient

mt

Mass of seed in kg

g

Gravitational force

Ai

Projected area of seed in air

NRe

Reynold’s number

ANOVA

Analysis of variance

SPSS

Statistical package for social science

Ply

Plywood

SS

Stainless steel

Notes

Acknowledgements

The authors are grateful to Defence Food Research Laboratory, DRDO, Mysore, India for providing us with all facilities and financial assistance to carryout the research work.

References

  1. 1.
    S. Bhuvaneswari, K.D. Susmitha, G.V. Shasthri, K. Bhuvaneswari,Int. J. Pharm. Boil. Sci. Arch. 5, 29–32 (2014)Google Scholar
  2. 2.
    C. Gopalan, B.V. Ramasastri, S.C. Balasubramanium, Nutritive Values of Indian Foods; NIN, (ICMR Publisher, Hyderabad, 2012) p. 48Google Scholar
  3. 3.
    A.K. Tiwari, A.K. Shivhare, Pulse in India: Retrospect and Prospects, (GOI, DAC&FW,publisher, Bhopal, publication No. DPD/Pub.1/vol.2/2016, 25–28 (2016)Google Scholar
  4. 4.
    I.G. Dursun, J. Agric. Sci. 7, 102–107 (2001)Google Scholar
  5. 5.
    N.N. Mohsenin, Physical Properties of Plants and Animal Materials. (Gordon and Breach Science Publishers, New York, 1980). pp. 79–94Google Scholar
  6. 6.
    K.M. Sahay, K.K. Singh, Unit Operation of Agricultural Processing; (Vikas Publishing House Pvt. Ltd., New Delhi, (1994). India.6–9Google Scholar
  7. 7.
    A.Tabatabaeefar, Physical properties of iranian potato; Proceedings of the International Agricultural Engineering Conference, Bangkok, Thailand. 501–506 (2000)Google Scholar
  8. 8.
    E. Altuntas, E. Ozgoz, O.F. Taser, J. Food Eng. 71, 37–43 (2005)CrossRefGoogle Scholar
  9. 9.
    M.A. Al-Mahaseneh, T.M. Rababah, J. Food Eng. 79, 1467–1473 (2007)CrossRefGoogle Scholar
  10. 10.
    R.M. Daivs, A.M. EL-Okene, Int. Agrophys. 23, 299–303 (2011)Google Scholar
  11. 11.
    N.I. Klenin, I.F. Popov, V.A. Sukun, Agricultural Machines Theory of Operation, Computation of Controlling Parameters and The Conditions of Operation (A merind publishing Corporation Pvt Ltd., New Delhi, 1985), p. 633Google Scholar
  12. 12.
    R. Stroshine, Physical Properties of Agricultural Material and Food Products (Teaching Material). (Department of Agricultural Engineering, Purdue University, West Lafayette, 2005)Google Scholar
  13. 13.
    I.A. Wani, D.S. Sogi, A.A. Wani, B.S. Gill, Int. J. Food Sci. Tech. 48, 2557–2563 (2013)CrossRefGoogle Scholar
  14. 14.
    Y.-W. Luoa, W.-H. Xie, CyTA J. Food, 11, 43–49 (2013)CrossRefGoogle Scholar
  15. 15.
    AOAC. Official Methods of Analysis (Association of Official Analytical Chemist, Washington DC, 2002).Google Scholar
  16. 16.
    N.N. Mohsenin, Physical Properties of Plant and Animal Materials, 2nd edn. (Gordon and Breach Science Publisher, New York, 1986), pp. 86–87Google Scholar
  17. 17.
    B.Y. Gorial, J.R. O’callaghan, J. Agric. Eng. Res. 46, 275–290 (1990)CrossRefGoogle Scholar
  18. 18.
    A.E.S. El-Raie, N.A. Hendawy, A.Z. Taib, Misr. J. Agr. Eng. 13, 211–226 (1996)Google Scholar
  19. 19.
    Y.A. El-Fawal, M.A. Tawfik, A.M. El-Shal, Misr. J. Agric. Eng. 26, 1933–1951 (2009)Google Scholar
  20. 20.
    N.N. Mohsenin, Physical Properties of Plant and Animal Materials, 1st edn. (Gordon and Breach Science Publisher, New York, 1970). pp. 621–632Google Scholar
  21. 21.
    J.N. Maduako, M.O. Faborode, Ife J. Technol. 2, 1–7 (1990)Google Scholar
  22. 22.
    S.O. Deshpande, S. Bal, T.P. Ojha, J. Agric. Eng. Res. 56, 89–98 (1993)CrossRefGoogle Scholar
  23. 23.
    H. Ogut, J. Agric. Eng. Res. 56, 273–277 (1998)Google Scholar
  24. 24.
    K.L. Singh, T.K. Goswami, J. Agric. Eng. Res. 64, 93–98 (1996)CrossRefGoogle Scholar
  25. 25.
    C. Ozarslan, Biosyst. Eng. 83, 169–174 (2002)CrossRefGoogle Scholar
  26. 26.
    I. Yalcin, C. Ozarslan, Biosyst. Eng. 88, 504–512 (2004)CrossRefGoogle Scholar
  27. 27.
    M. Markowski, K. Majewska, D. Kwiatkowki, M. Malkowski, G. Burdylo, Int. J. Food Prop. 13, 890–903 (2010)CrossRefGoogle Scholar
  28. 28.
    V. Sharma, L. Das, R.C. Pradhan, S.N. Naik, N. Bhatnagar, R.S. Kureel, Ind. Crop. Prod. 33, 440–444 (2011)CrossRefGoogle Scholar
  29. 29.
    Y.A. Adebowale, A. Adeyemiand, A. Oshodi, Food Chem. 89, 37–48 (2005)CrossRefGoogle Scholar
  30. 30.
    I.A. Wani, D.S. Sogi, A.A. Wani, B.S. Gill, J. Saudi Soc. Agric. Sci. 16, 7–15 (2017)Google Scholar
  31. 31.
    R. Ravindran, S.T.B. Sundar, TN J. Vet. Anim. Sci. 5(4), 125–131 (2009)Google Scholar
  32. 32.
    M. Marimuthul, K. Krishnamoorthi, J. Chem. Pharm. Res. 5(5), 390–394 (1990)Google Scholar
  33. 33.
    O.T. Omobuwajo, A.E. Akande, A.L. Sann, J. Food Eng. 40, 241–244 (1999)CrossRefGoogle Scholar
  34. 34.
    A.F. Alonge, Y.J. Adigun. In: Proceeding of 21st annual conference of the Nigeria society of agricultural engineering (NASE) at federal Poly technique, Bauchi, Nigeria, (1990)Google Scholar
  35. 35.
    E. Isik, H. Unal, J. Food Eng. 82, 209–216 (2007)CrossRefGoogle Scholar
  36. 36.
    K. Oje, E.C. Ugbor, J. Agric. Eng. Res. 50, 305–313 (1991)CrossRefGoogle Scholar
  37. 37.
    P. Liny, M.S. Khodwe, Int. J. Dev. Res. 3, 13–16 (2013)Google Scholar
  38. 38.
    M. Markowski, K. Zuk-Golaszewska, K. Kwiatkowki, Ind. Crop Prod. 47, 113–117 (2013)CrossRefGoogle Scholar
  39. 39.
    H. Song, J.B. Litchfield, Trans. ASAE 34, 225–231 (1991)CrossRefGoogle Scholar
  40. 40.
    S.S. Kadam, P. Subramanayam, H.K. Jawale, P.N. Satwadhar, S.J. Jadhav, Plant Food Hum. Nutr. 31, 171 (1981)CrossRefGoogle Scholar
  41. 41.
    S. Jain, V. Singh, S. Chelawat, J. Dairy Food Home Sci. 31(3), 184–190 (2012)Google Scholar
  42. 42.
    F. Appiah, J.Y. Asibuo, P. Kumah, Afr. J. Food Sci. 5(2), 100–104 (2011)Google Scholar
  43. 43.
    L.B. Rockland, F.T. Jones, J. Food Sci. 39, 342–346 (1974)CrossRefGoogle Scholar
  44. 44.
    H.V. Narasimha, H.S.R. Desikachar, J. Food Sci. Tech. 15(2), 47–50 (1978)Google Scholar
  45. 45.
    W. Moscoso, M.C. Bourne, L.F. Hood, J. Food Sci. 49(6), 1577–1583 (1984)CrossRefGoogle Scholar
  46. 46.
    B.O. Juliano, C.M. Perez, J. Texture Stud. 14(3), 235–243 (2007)CrossRefGoogle Scholar
  47. 47.
    R.J. Henry, J. Inst. Brew. 96, 135–136 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Grain Science & Technology Division, Defence Food Research Laboratory (DFRL)Defence Research & Development Organisation (DRDO), Ministry of Defence (MOD), Govt of IndiaMysuruIndia

Personalised recommendations