Skip to main content
Log in

Electrical impedance analysis of pork tissues during storage

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

To explore the changes in the cell physiological status of pork tissues at different storage stages, electrical impedance spectroscopy (EIS) was used in this study. The measured impedance values were analyzed with equivalent circuit models consisting of several electrical components. In order to model the complex pork tissues accurately, a constant phase element (CPE) was introduced instead of Cm in the conventional Fricke model to reflect the capacitance of cell membrane. R2 values of the real part of impedance were within the range between 0.961 and 0.999, and those for the imaginary part were between 0.730 and 0.999. The results suggested that the modified model with CPE can be further developed to monitor tissues conductivity changes and to evaluate cell physiological status of heterogeneous pork tissues in storage. Control and evaluation of meat maturation state with electrical impedance spectroscopy, which is a convenient and inexpensive method, is feasible and applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.H. Chen, Y.P. Zhu, P. Wang, M.Y. Han, R. Wei, X.L. Xu, G.H. Zhou, The use of the impedance measurements to distinguish between fresh and frozen-thawed chicken breast muscle. Meat Sci. 116, 151–157 (2016)

    Article  Google Scholar 

  2. J.L. Damez, S. Clerjon, S. Abouelkaram, J. Lepetit, Electrical impedance probing of the muscle food anisotropy for meat ageing control. Food Control 19, 931–939 (2008)

    Article  Google Scholar 

  3. D. Ercolini, I. Ferrocino, A. Nasi, M. Ndagijimana, P. Vernocchi, L.A. Storia, L. Laghi, G. Mauriello, M.E. Guerzoni, F. Villani, Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions. Appl. Environ. Microbiol. 77, 7372–7381 (2011)

    Article  CAS  Google Scholar 

  4. H.B. Nguyen, L.T. Nguyen, Rapid and non-invasive evaluation of pork meat quality during storage via impedance measurement. Int. J. Food Sci. Technol. 50, 1718–1725 (2015)

    Article  CAS  Google Scholar 

  5. C.G. Marta, B. Patricia, T. Fidel, F. Pedro, Low—frequency dielectric spectrum to determine pork meat quality. Innov. Food Sci. Emerg. 11, 376–386 (2010)

    Article  Google Scholar 

  6. F.Y. Wu, S.B. Smith, Ionic strength and myofibrillar protein solubilization. J. Anim. Sci. 65, 597–608 (1987)

    Article  CAS  Google Scholar 

  7. C.G. Marta, T. Fidel, F. Pedro, Low frequency dielectric measurements to assess post-mortem ageing of pork meat. LWT Food Sci. Technol. 44, 1465–1472 (2011)

    Article  Google Scholar 

  8. L. Zhang, X. Shi, F. You, P. Liu, X. Dong, Improved circuit model of open-ended coaxial probe for measurement of the biological tissue dielectric properties between megahertz and gigahertz. Physiol. Meas. 34, N83-96 (2013)

    Google Scholar 

  9. H.P. Schwan, Electrical properties of tissues and cell suspensions: mechanisms and models. Int. Conf. IEEE Eng. 1, 70–71 (1994)

    Google Scholar 

  10. D. Samuel, S. Trabelsi, Measurement of dielectric properties of intact and ground broiler breast meat over the frequency range from 500 MHz to 50 GHz. Int. J. Poul. Sci. 11, 172–176 (2012)

    Article  Google Scholar 

  11. J.L. Damez, S. Clerjon, S. Abouelkaram, J. Lepetit, Beef meat electrical impedance spectroscopy and anisotropy sensing for non-invasive early assessment of meat ageing. J. Food Eng. 85, 116–122 (2008)

    Article  Google Scholar 

  12. K.R. Foster, J.L. Schepps, R.D. Stoy, H.P. Schwan, Dielectric properties of brain tissue between 0.01 and 10 GHz. Phys. Med. Biol. 24, 1177–1187 (1979)

    Article  CAS  Google Scholar 

  13. N.R. Nightingale, V.D. Goodridge, R.J. Sheppard, J.L. Christie, The dielectric properties of the cerebellum, cerebrum and brain stem of mouse brain at radiowave and microwave frequencies. Phys. Med. Biol. 28, 897–903 (1983)

    Article  CAS  Google Scholar 

  14. W.T. Joines, Y. Zhang, C. Li, R.L. Jirtle, The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med. Phys. 21, 547–550 (1994)

    Article  CAS  Google Scholar 

  15. M. Altmann, U. Pliquett, Prediction of intramuscular fat by impedance spectroscopy. Meat Sci. 72, 666–671 (2006)

    Article  Google Scholar 

  16. Y. Ando, K. Mizutani, N. Wakatsuki, Electrical impedance analysis of potato tissues during drying. J. Food Eng. 121, 24–31 (2014)

    Article  Google Scholar 

  17. H. Fricke, A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Phys. Rev. 24, 575–587 (1924)

    Article  CAS  Google Scholar 

  18. H. Fricke, A mathematical treatment of the electric conductivity and capacity of disperse systems ii. The capacity of a suspension of conducting spheroids surrounded by a non-conducting membrane for a current of low frequency. Phys. Rev. 26, 678–681 (1925)

    Article  Google Scholar 

  19. L. Wu, Y. Ogawa, A. Tagawa, Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing–thawing treatments on its impedance characteristics. J. Food Eng. 87, 274–280 (2008)

    Article  Google Scholar 

  20. U. Pliquett, M. Altmann, F. Pliquett, L. Schöberlein, Py—a parameter for meat quality. Meat Sci. 65, 1429–1437 (2003)

    Article  CAS  Google Scholar 

  21. Y. Zhao, M. Wang, J. Yao, Characterization of colloidal particles using electrical impedance spectroscopy in two-electrode system with carbon probe. Procedia Eng. 102, 322–328 (2015)

    Article  CAS  Google Scholar 

  22. K.S. Cole, R.H. Cole, dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941)

    Article  CAS  Google Scholar 

  23. E.J. Williams, R.J. Johnston, J. Dainty, The electrical resistance and capacitance of the membranes of Nitella translucens. J. Exp. Bot. 15, 1–14 (1964)

    Article  Google Scholar 

  24. R.I. Hayden, C.A. Moyse, F.W. Calder, D.P. Crawford, D.S. Fensom, Electrical impedance studies on potato and Alfalfa tissue. J. Exp. Bot. 20, 177–200 (1969)

    Article  Google Scholar 

  25. M. Itagaki, A. Taya, K. Watanabe, K. Noda, Deviation of capacitive and inductive loops in the electrochemical impedance of a dissolving iron electrode. Anal. Sci. 18, 641–644 (2002)

    Article  CAS  Google Scholar 

  26. P. Zoltowski, On the electrical capacitance of interfaces exhibiting constant phase element behaviour. J. Electroanal. Chem. 443, 149–154 (1998)

    Article  CAS  Google Scholar 

  27. S. Skale, V. Doleček, M. Slemnik, Substitution of the constant phase element by Warburg impedance for protective coatings. Corros. Sci. 49, 1045–1055 (2007)

    Article  CAS  Google Scholar 

  28. R. Pethig, D.B. Kell, The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys. Med. Biol. 32, 933–970 (1987)

    Article  CAS  Google Scholar 

  29. H.P. Schwan, Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5, 147–209 (1957)

    Article  CAS  Google Scholar 

  30. J.L. Damez, S. Clerjon, S. Abouelkaram, J. Lepetit, Dielectric behavior of beef meat in the 1-1500kHz range: Simulation with the Fricke/Cole–Cole model. Meat Sci. 77, 512–519 (2007)

    Article  Google Scholar 

  31. L.C. Ward, Inter-instrument comparison of bioimpedance spectroscopic analysers. Open Med. Dev. J. 1, 3–10 (2009)

    Article  Google Scholar 

  32. T. Hanai, Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions. Colloid Polym. Sci. 171, 249 (1960)

    Google Scholar 

  33. K. Asami, T. Hanai, N. Koizumi, Dielectric approach to suspensions of ellipsoidal particles covered with a shell in particular reference to biological cells. Jpn. J. Appl. Phys. 19, 359–365 (1980)

    Article  Google Scholar 

  34. J.L. Damez, S. Clerjon, Meat quality assessment using biophysical methods related to meat structure. Meat Sci. 80, 132–149 (2008)

    Article  Google Scholar 

  35. H.L. Elisabeth, M.L. Steven, Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Sci. 71, 194–204 (2005)

    Article  Google Scholar 

  36. G. Valet, S. Silz, H. Metzger, G. Ruhenstroth-Bauer, Electrical sizing of liver cell nuclei by the particle beam method. Mean volume, volume distribution and electrical resistance. Acta Hepato-Gastroenterol 22, 274–281 (1975)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghai Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Hou, J., Wang, L. et al. Electrical impedance analysis of pork tissues during storage. Food Measure 12, 164–172 (2018). https://doi.org/10.1007/s11694-017-9627-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9627-x

Keywords

Navigation