Development and characterization of soluble fiber enriched noodles via fortification with partially hydrolyzed guar gum

Original Paper
  • 27 Downloads

Abstract

Partially hydrolyzed guar gum was prepared via enzymatic hydrolysis of native guar gum. Partially hydrolyzed guar gum (PHGG) thus obtained after enzymatic hydrolysis contained 80.04% soluble dietary fiber and 83.1% total dietary fiber. In present study, the effect of process variables such as PHGG level (1–5%), water level (30–40%) and mixing time (2–6 min) on response variables i.e. cooking yield, cooking loss and overall acceptability of noodles were studied using response surface methodology. The second order model obtained for cooking yield, cooking loss and overall acceptability of noodles revealed coefficient of determination of 0.9796, 0.9446 and 0.7787, respectively. The optimum values for independent variables i.e. PHGG level, water level and mixing time were 2.23, 32.03% and 2.81 min, respectively. Results showed that noodles with reduced cooking yield, increased cooking loss and improved sensory and textural characteristics were prepared with fortification of 2.23% partially hydrolyzed guar gum as soluble fibre.

Keywords

Partially hydrolyzed guar gum Soluble fiber Cooking quality Texture Noodles 

References

  1. 1.
    S.G. Sayago-Ayerdi, J. Tovar, F.J. Blancas-Benitez, L.A. Bello-Perez, J. Food Nutr. Res. 50, 1–12 (2011)Google Scholar
  2. 2.
    D. Mudgil, S. Barak, Int. J. Biol. Macromol. 61, 1–6 (2013)CrossRefGoogle Scholar
  3. 3.
    D. Mudgil, S. Barak, B.S. Khatkar, Carpathian J. Food Sci. Technol. 3, 39–42 (2011)Google Scholar
  4. 4.
    D. Mudgil, S. Barak, B.S. Khatkar, J. Food Sci. Technol. 51, 409–418 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Barak, D. Mudgil, Int. J. Biol. Macromol. 66, 74–80 (2014)CrossRefGoogle Scholar
  6. 6.
    D. Mudgil, S. Barak, B.S. Khatkar, J. Food Sci. Technol. 51, 1600–1605 (2014)CrossRefGoogle Scholar
  7. 7.
    D. Mudgil, S. Barak, B.S. Khatkar, Agro Food Ind. Hi Tech 23, 13–15 (2012)Google Scholar
  8. 8.
    D. Mudgil, S. Barak, B.S. Khatkar, Agro Food Ind. Hi Tech 23, 15–17 (2012)Google Scholar
  9. 9.
    D. Mudgil, S. Barak, B.S. Khatkar, Int. J. Biol. Macromol. 50, 1035–1039 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Barak, D. Mudgil, B.S. Khatkar, Crit. Rev. Food Sci. Nutr. 55, 357–368 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Barak, D. Mudgil, B.S. Khatkar, J. Food Sci. Technol. 51, 1342–1348 (2014)CrossRefGoogle Scholar
  12. 12.
    W. Zhang, C. Sun, F. He, J. Tian, Int. J. Food Prop. 13, 294–307 (2010)CrossRefGoogle Scholar
  13. 13.
    R. Singh, G. Singh, G.S. Chauhan, J. Food Sci. Technol. 33, 355–357 (1996)Google Scholar
  14. 14.
    A.R. Leeds, A. Avenell, Dietary Fibre Perspectives: Reviews and Bibliography, 1st edn. (John Libbey Company, London, 1985), p. 58Google Scholar
  15. 15.
    M.S. Izydorczyk, S.L. Lagasse, D.W. Hatcher, J.E. Dexter, B.G. Rossnagel, J. Sci. Food Agric. 85, 2094–2104 (2005)CrossRefGoogle Scholar
  16. 16.
    A.A. Mohamed, P. Rayas-Duarte, J. Xu, D.E. Palmquist, G.E. Inglet, J. Food Sci. 70, S1-S7 (2005)CrossRefGoogle Scholar
  17. 17.
    S.L. Lagasse, D.W. Hatcher, J.E. Dexter, B.G. Rossnagel, M.S. Izydorczyk, Cereal Chem. 83, 202–210 (2006)CrossRefGoogle Scholar
  18. 18.
    K. Shukla, S. Srivastava, J. Food Sci. Technol. 51, 527–534 (2014)CrossRefGoogle Scholar
  19. 19.
    C.S. Brennan, E. Samyue, Int. J. Food Prop. 7, 647–657 (2004)CrossRefGoogle Scholar
  20. 20.
    D.C. Montgomery, Design and Analysis of Experiments, 1st edn (Wiley, New York, 2001), p. 108Google Scholar
  21. 21.
    R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiments (Wiley, New York, 2009), p. 46Google Scholar
  22. 22.
    D. Mudgil, S. Barak, B.S. Khatkar, J. Cereal Sci. 69, 104–110 (2016)CrossRefGoogle Scholar
  23. 23.
    AOAC, Official Methods Of Analysis, (Association of Official Analytical Chemists, Washington, 1990)Google Scholar
  24. 24.
    I. Furda, in The analysis of dietary fibre in food, ed. by W.P.T. James, O. Theander (Marcel Dekker, New York, 1981), p. 163Google Scholar
  25. 25.
    G.E. Inglett, S.C. Peterson, C.J. Carrere, S. Maneepun, Food Chem. 90, 1–8 (2005)CrossRefGoogle Scholar
  26. 26.
    W. Weng, W. Liu, W. Lin, Asian Australas. J. Anim. Sci. 14, 1470–1476 (2001)CrossRefGoogle Scholar
  27. 27.
    S.J. Yoon, D.C. Chu, L.R. Juneja, J. Clin. Biochem. Nutr. 42, 1–7 (2008)CrossRefGoogle Scholar
  28. 28.
    A. Gull, K. Prasad, P. Kumar, LWT-Food Sci. Tech. 63, 470–474 (2015)CrossRefGoogle Scholar
  29. 29.
    C.M. Tudorica, V. Kuri, C.S. Brennan, J. Agric. Food Chem. 50, 347–356 (2002)CrossRefGoogle Scholar
  30. 30.
    A. Gull, K. Prasad, P. Kumar, Food Sci. Technol. 35, 626–632 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Chilo, J. Laverse, P.M. Falcone, M.A. Del, Nobile, J. Food Eng. 83, 492–500 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Dairy & Food TechnologyMansinhbhai Institute of Dairy & Food TechnologyMehsanaIndia
  2. 2.Department of Food TechnologyGuru Jambheshwar University of Science & TechnologyHisarIndia

Personalised recommendations