Influence of germination period on physicochemical, pasting and antioxidant properties of Indian wheat cultivars

  • Brij Lal Karwasra
  • Balmeet Singh Gill
  • Maninder Kaur
  • Harpreet Kaur
Original Paper
  • 57 Downloads

Abstract

In the present study, physicochemical, pasting and antioxidant properties of six wheat (Triticum aestivum L.) cultivar grains after 24, 48 and 72 h of germination duration were evaluated and compared with their un-germinated counterparts. Chemical compositions of un-germinated fraction of whole flour were also determined. The results showed that swelling power decreased whereas solubility increased as the time of germination increased. From 24 to 72 h water and oil absorption capacities increased significantly with germination. The DPPH radical scavenging activity and reducing power exhibited significant (p ≤ 0.05) increase with germination for all the cultivars. Total phenolic content ranged from 463.6 to 644.6 µg ferulic acid equivalents (FAE)/g for un-germinated to 1255.5–2380.9 µg FAE/g for germinated whole grain flour. Total flavonoids content increased from 86.5 to 266.7 µg catechin equivalents (CE)/g for un-germinated to 289.7–385.4 µg CE/g as the duration of germination increased from 0 to 72 h. The characteristics curves showing pasting profile of different cultivars became nearly linear for 48 and 72 h germinated grain flour. Several, significant correlations were observed among studied properties from principal component analysis.

Keywords

Chemical composition Whole grain flour Antioxidants Polyphenols Flavonoids Pasting properties 

References

  1. 1.
    F. Kalkan, M. Kara, Powder Technol. 213, 116 (2011)CrossRefGoogle Scholar
  2. 2.
    FAO. Food and Agriculture Organization of the United Nations. (FAO, Rome, 2014). http://faostat.fao.org. Accessed Nov 2016
  3. 3.
    E. Sangronis, C.J. Machado, J. Sci. Technol. 40, 116 (2007)Google Scholar
  4. 4.
    M.J.R. Nout, Int. J. Food Sci. Nutr. 43, 213 (1992)CrossRefGoogle Scholar
  5. 5.
    M. Kaur, N. Singh, Food Chem. 91, 403 (2005)CrossRefGoogle Scholar
  6. 6.
    P. Houssou, G.S. Ayernor, Afr. J. Sci. Technnol. 3, 126 (2002)Google Scholar
  7. 7.
    D.A. Murugkar, P. Gulati, C. Gupta, Int. J. Food Nutr. Sci. (IJFANS) 2, 8 (2013)Google Scholar
  8. 8.
    K.B. Filli, I. Nkama, U.M. Abubakar, V.A. Jideani, Afr. J. Food Sci. 4, 342 (2010)Google Scholar
  9. 9.
    L. Alvarez-Jubete, H. Wijngaard, E.K. Arendt, E. Gallagher, Food Chem. 119, 770 (2010)CrossRefGoogle Scholar
  10. 10.
    T. Wang, F. He, G. Chen, J. Funct. Foods 7, 101 (2014)CrossRefGoogle Scholar
  11. 11.
    L. Bohn, A. Meyer, S. Rasmussen, J. Zhejiang Univ. Sci. B 9, 165 (2008)CrossRefGoogle Scholar
  12. 12.
    R.H. Liu, J. Nutr. 134, 3479 (2004). SCrossRefGoogle Scholar
  13. 13.
    S. Patel, J. Funct. Foods 14, 255 (2015)CrossRefGoogle Scholar
  14. 14.
    C.E. Walker, A.S. Ross, C.W. Wrigley, G.J. MacMaster, Cereal Foods World 33, 491 (1988)Google Scholar
  15. 15.
    L.S. Collado, H. Corke, J. Agric. Food Chem. 47, 832 (1999)CrossRefGoogle Scholar
  16. 16.
    W. Bleukx, M.G. Van Oort, J.A. Delcour, Cereal Chem. 76, 195 (1999)CrossRefGoogle Scholar
  17. 17.
    A. Becker, S.E. Hill, J.R. Mitchell, Cereal Chem. 78, 166 (2001)CrossRefGoogle Scholar
  18. 18.
    X.Z. Han, B.R. Hamaker, J. Cereal Sci. 34, 279 (2001)CrossRefGoogle Scholar
  19. 19.
    F. Yang, T.K. Basu, B. Ooraikul, Int. J. Food Sci. Nutr. 52, 319 (2001)CrossRefGoogle Scholar
  20. 20.
    AOAC, Official Methods of Analysis, 15th edn. (Association of Official Analytical Chemists, Washington, D.C., 1990)Google Scholar
  21. 21.
    H.W. Leach, L.D. Mc Cown, T.J. Schoch, Cereal Chem. 36, 535 (1959)Google Scholar
  22. 22.
    F.W. Sosulski, Cereal Chem. 39, 344 (1962)Google Scholar
  23. 23.
    M.J.Y. Lin, E.S. Humbert, F.W. Sosulski, J. Food Sci. 39, 368 (1974)CrossRefGoogle Scholar
  24. 24.
    W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT-Food Sci. Technol. 28, 245 (1995)CrossRefGoogle Scholar
  25. 25.
    H. Zhao, W. Fan, J. Dong, J. Lu, J. Chen, L. Shan, Y. Lin, W. Kong, Food Chem. 107, 296 (2008)CrossRefGoogle Scholar
  26. 26.
    P. Sharma, H.S. Gujral, Food Chem. 120, 673 (2010)CrossRefGoogle Scholar
  27. 27.
    Z. Jia, M. Tang, J. Wu, Food Chem. 64, 555 (1998)Google Scholar
  28. 28.
    M. Kaur, S. Singh, Int. J. Food Prop. 19, 2432 (2016)CrossRefGoogle Scholar
  29. 29.
    A. Colombo, G.T. Perez, P.D. Ribotta, A.E. Leon, J. Cereal Sci. 48, 775 (2008)CrossRefGoogle Scholar
  30. 30.
    H.D. Sapirstein, M. Wang, T. Beta, LWT-Food Sci. Technol. 50, 336 (2013)CrossRefGoogle Scholar
  31. 31.
    D. Manley, Technology of Biscuits, Crackers and Cookies, 3rd edn. (Woodhead Publishing Limited, Cambridge, 2000), p. 84CrossRefGoogle Scholar
  32. 32.
    B.L. Karwasra, B.S. Gill, M. Kaur, H. Kaur, Qual. Assur. Saf. Crops Foods (2017). doi: 10.3920/QAS2016.0998 Google Scholar
  33. 33.
    K. Jangchud, Y. Phimolsiripol, V. Haruthaithanasan, Starch/Starke 55, 258 (2003)CrossRefGoogle Scholar
  34. 34.
    M. Ilowefah, J. Bakar, H.M. Ghazali, A. Mediani, J. Food Sci. Technol. 52, 5534 (2015)CrossRefGoogle Scholar
  35. 35.
    R. Juhasz, S. Gergely, T. Gelencser, A. Salgo, Cereal Chem. 82, 488 (2005)CrossRefGoogle Scholar
  36. 36.
    H.J. Chung, D.W. Cho, J.D. Park, D.K. Kweon, S.T. Lim, J. Cereal Sci. 56, 451 (2012)CrossRefGoogle Scholar
  37. 37.
    M. Siddiq, R. Ravi, J.B. Harte, K.D. Dolan, LWT-Food Sci. Technol. 43, 232 (2010)CrossRefGoogle Scholar
  38. 38.
    I.A. Wani, D.S. Sogi, A.A. Wani, B.S. Gill, LWT-Food Sci. Technol. 53, 278 (2013)CrossRefGoogle Scholar
  39. 39.
    D.I. Gernah, C.C. Ariahu, E.K. Ingbian, Am. J. Food Technol. 6, 404 (2011)CrossRefGoogle Scholar
  40. 40.
    J.E. Kinsella, Food Sci. Nutr. 7, 219 (1976)Google Scholar
  41. 41.
    H. Zielinski, H. Kozlowska, B. Lewczuk, Innov. Food Sci. Emerg. Technol. 2, 159 (2001)CrossRefGoogle Scholar
  42. 42.
    I. Calzuola, V. Marsili, G.L. Gianfranceschi, J. Agric. Food Chem. 52, 5201 (2004)CrossRefGoogle Scholar
  43. 43.
    P.D. Duh, J. Am. Oil Chem. Soc. 75, 455 (1998)CrossRefGoogle Scholar
  44. 44.
    M. Monagas, B. Bartoloe, C. Gomez-Cordoves, Crit. Rev. Food Sci. Nutr. 45, 85 (2005)CrossRefGoogle Scholar
  45. 45.
    S. Zilic, Z. Basic, V. Hadzi-Taskovic Sukalovi, V. Maksimovic, M. Jankovic, M. Filipovic, Int. J. Food Sci. Technol. 49, 1040 (2014)CrossRefGoogle Scholar
  46. 46.
    O.N. Donkor, L. Stojanovska, P. Ginn, J. Ashton, T. Vasiljevic, Food Chem. 135, 950 (2012)CrossRefGoogle Scholar
  47. 47.
    J. Lv, L. Yu, Y. Lu, Y. Niu, L. Liu, J. Costa, L.L. Yu, Food Chem. 135, 325 (2012)CrossRefGoogle Scholar
  48. 48.
    S. Ragaee, I. Guzar, E.S.M. Abdel-Aal, K. Seetharaman, Can. J. Plant Sci. 92, 19 (2012)CrossRefGoogle Scholar
  49. 49.
    N.N. Rosa, C. Dufour, V. Lullien-Pellerin, V. Micard, Food Chem. 141, 2355 (2013)CrossRefGoogle Scholar
  50. 50.
    H.S. Chung, W.S. Woo, J. Nat. Prod. 64, 1579 (2001)CrossRefGoogle Scholar
  51. 51.
    H. Ti, R. Zhang, M. Zhang, Q. Li, Z. Wei, Y. Zhang, X. Tang, Y. Deng, L. Liu, Y. Ma, Food Chem. 161, 337 (2014)CrossRefGoogle Scholar
  52. 52.
    K. Phattayakorn, P. Pajanyor, S. Wongtecha, A. Prommakool, W. Saveboworn, Int. Food Res. J. 23, 406 (2016)Google Scholar
  53. 53.
    J. Xu, H. Zhang, X. Guo, H. Qian, J. Sci. Food Agric. 92, 380 (2012)CrossRefGoogle Scholar
  54. 54.
    G.B. Fincher, Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 305 (1989)CrossRefGoogle Scholar
  55. 55.
    L.H. Xie, N. Chen, B.W. Duan, Z.W. Zhu, X.Y. Liao, J. Cereal Sci. 47, 372 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Brij Lal Karwasra
    • 1
  • Balmeet Singh Gill
    • 1
  • Maninder Kaur
    • 1
  • Harpreet Kaur
    • 1
  1. 1.Department of Food Science and TechnologyGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations