CO2 supercritical fluid extraction and characterization of polysaccharide from bamboo (Phyllostachys heterocycla) leaves

  • Xiaolin Zou
  • Yongxiao Liu
  • Cui Tao
  • Ya Liu
  • Mei Liu
  • Jian Wu
  • Zhaolin Lv
Original Paper

Abstract

CO2 supercritical fluid technique with an ethanol modifier was used to extract bamboo (Phyllostachys heterocycla) leave’s polysaccharide (BLPs) regarding various operating conditions. Pressure (30, 40 and 50 MPa), extraction temperature (40, 45 and 50 °C), extraction time (2, 3 and 4 h) and modifier dosage (20, 25 and 30 mL) were important operating factors affecting the yield and total antioxidant activity of each BLPs extraction. The optimal parameters for harvesting the BLPs were an extracting time of 2 h plus 40 MPa pressure with 30 mL of ethanol modifier at 50 °C. In this case, 2.47% BLPs (in wt) was extracted. The BLPs, after purified by D101 macroporous resin and DEAE-cellulose column, with the average molecular weight of 5.05 × 104 Da are composed of rhamnose, fucose, arabinose, xylose, mannose, glucose, and galactose in the molar ratio of 1.318:2.100:1.189:1.016:1:4.776:1.318, respectively. It showed the best antioxidant activity, and its total antioxidant activity of the BLPs extracted was equivalent to 20.70 mg ascorbic acid [(VcE)/g]. In a word, our technique should be potential for producing the best yield and activity of bamboo (Phyllostachys heterocycla) leave’s polysaccharide.

Keywords

Bamboo polysaccharide Supercritical carbon dioxide Extraction process Antioxidant Purification Monosaccharide Analysis 

References

  1. 1.
    M. Li, Y. Fan, F. Xu, R. Sun, J. Appl. Polym. 121, 176–185 (2011)CrossRefGoogle Scholar
  2. 2.
    P. Peng, D. She, Carbohydr. Polym. 112, 701–720 (2014)CrossRefGoogle Scholar
  3. 3.
    K.C. Wilkie, S.L. Woo, Carbohydr. Res 57, 145–162 (1977)CrossRefGoogle Scholar
  4. 4.
    T. Seki, K. Kida, H. Maeda, Evid. Based Complement Alternat. Med. 7, 447–457 (2010)CrossRefGoogle Scholar
  5. 5.
    X. Li, A. Zhou, Y. Han, Carbohydr. Polym. 66, 34–42 (2006)CrossRefGoogle Scholar
  6. 6.
    Y. Shi, J. Sheng, F. Yang, Q. Hu, Food Chem. 103, 101–105 (2007)CrossRefGoogle Scholar
  7. 7.
    M. Vinatoru, Ultrason. Sonochem. 8, 303–3013 (2001)CrossRefGoogle Scholar
  8. 8.
    J. Lundqvist, A. Teleman, L. Junel, G. Zacchi, O. Dahlman, F. Tjerneld, H.S. Lbrand, Carbohydr Polym. 48, 29–39 (2002)CrossRefGoogle Scholar
  9. 9.
    B.A. Kaufmann, P. Christen, Phytochem. Anal. 13, 105–113 (2002)CrossRefGoogle Scholar
  10. 10.
    L. Wang, C.L. Weller, Trends Food Sci. Tech. 17, 300–312 (2006)CrossRefGoogle Scholar
  11. 11.
    E. Reverchon, J. Supercrit. Fluid 10, 1–37 (1997)CrossRefGoogle Scholar
  12. 12.
    S. Cavero, M.R. García-Risco, F.R. Marín, L. Jaime, S. Santoyo, F.J. Señoráns, G. Reglero, E. Ibañez, J. Supercrit. Fluid 38, 62–69 (2006)CrossRefGoogle Scholar
  13. 13.
    L. Casas, C. Mantell, M. Rodríguez, A. Torres, F.A. Macías, E.J. Martínez De La Ossa, J. Supercrit. Fluid 45, 37–42 (2008)CrossRefGoogle Scholar
  14. 14.
    A.S. Zarena, K. Udaya Sankar, J. Supercrit. Fluid 49, 330–337 (2009)CrossRefGoogle Scholar
  15. 15.
    H. İçen, M. Gürü, J. Supercrit. Fluid 50, 225–228 (2009)CrossRefGoogle Scholar
  16. 16.
    A.N. Giannuzzo, H.C.J. Boggetti, M.N.A. Nazareno, H.T. Mishima, Phytochem. Anal. 14, 221–223 (2003)CrossRefGoogle Scholar
  17. 17.
    E. Ellington, J. Bastida, F. Viladomat, C. Codina, Phytochem. Anal. 14, 164–169 (2003)CrossRefGoogle Scholar
  18. 18.
    I. Yu, Z. Yu, M. Koo, B. Wang, J. Food Process Preserv. 40, 743–748 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Yu, X. Chang, Y. Li, Southwest China J. Agric. Sci. 23, 181–183 (2010)Google Scholar
  20. 20.
    M. Chen, L. Xiong, C. Yuan, J. Anhui Agric. Sci. 39, 261–263 (2011)Google Scholar
  21. 21.
    K. Czaikoski, M.C. Mesomo, A.P. Scheer, R. Osmar, D. Santa, C.L. Queiroga, M.L. Corazza, J. Supercrit. Fluid 97, 145–153 (2015)CrossRefGoogle Scholar
  22. 22.
    E. V, B. Simándi, K.P. Vásárhelyiné, H. Daood, A. Kéry, F. Doleschall, B. Nagy, J. Supercrit. Fluid 40, 218–226 (2007)CrossRefGoogle Scholar
  23. 23.
    M. Sun, F. Temelli, J. Supercrit. Fluid 37, 397–408 (2006)CrossRefGoogle Scholar
  24. 24.
    N.L. Rozzi, R.K. Singh, R.A. Vierling, B.A. Watkins, J. Agric. Food Chem. 50, 2638–2643 (2002)CrossRefGoogle Scholar
  25. 25.
    L.T. Danh, R. Mammucari, P. Truong, N. Foster, Chem. Eng. J. 155, 617–626 (2009)CrossRefGoogle Scholar
  26. 26.
    Z. Luo, X. Xu, B. Yan, J. Sci. Food Agric. 88, 151–157 (2008)CrossRefGoogle Scholar
  27. 27.
    T.A. Scott, E.H. Melvin, Anal. Chem. 25, 49–52 (1952)Google Scholar
  28. 28.
    P. Prieto, M. Pineda, M. Aguilar, Anal. Biochem. 269, 337–341 (1999)CrossRefGoogle Scholar
  29. 29.
    Y. Chen, M. Xie, S. Nie, C. Li, Y. Wang, Food Chem. 107, 231–241 (2008)CrossRefGoogle Scholar
  30. 30.
    H. Sun, H. Pan, Vaccine 24, 1914–1920 (2006)CrossRefGoogle Scholar
  31. 31.
    J. Wang, J.C. Zhou, X. Fang, J. Beijing Fore Univ. 34, 160–164 (2012)Google Scholar
  32. 32.
    L. Casas, C. Mantell, M. Rodíguez, A. Torres, F.A. Macías, J. Supercrit. Fluids 41, 43–49 (2007)CrossRefGoogle Scholar
  33. 33.
    M.P. Seied, S.H. Seiedeh, J. Chromatogr. A 1163, 2–24 (2007)CrossRefGoogle Scholar
  34. 34.
    H. Li, J. Hu, H. Ouyang, Y. Li, H. Shi, C. Ma, Y. Zhang, J. AOAC Int. 92, 103–110 (2009)Google Scholar
  35. 35.
    H. Park, H. Lee, M. Shin, K. Lee, H. Lee, Y. KIM, K. Kim, K. Kim, Food Chem. 105, 1011–1017 (2007)CrossRefGoogle Scholar
  36. 36.
    Z. Wang, F. Li, X. Lin, L. Chai, L. Liu, Sci. Tech. Food Ind. 8, 236–237 (2011)Google Scholar
  37. 37.
    S. Jiang, North. Gard. 13, 166–168 (2014)Google Scholar
  38. 38.
    J. Yu, Y. Yue, F. Tang, X. Yao, J. Wang, J. Anhui Agric. Univ. 39, 401–406 (2013)Google Scholar
  39. 39.
    Y. Hu, M. Li, J. Wang, J. Xihua Univ. 6, 108–110 (2010)Google Scholar
  40. 40.
    S. He, X. Wang, Y. Zhang, J. Wang, H. Sun, J. Wang, X. Cao, Y. Ye, Carbohydr. Polym. 151, 295–304 (2016)CrossRefGoogle Scholar
  41. 41.
    J. Wu, J. Zheng, X. Xia, J. Kan, Int. J. Mol. Sci. 16, 15560–15577 (2015)CrossRefGoogle Scholar
  42. 42.
    S. Mazumder, P.K. Ghosal, C.A. Pujol, M.J. Carlucci, E.B. Damonte, B. Ray, Int. J. Biol Macromol. 31, 87–95 (2002)CrossRefGoogle Scholar
  43. 43.
    M. Witvrouw, D. Schols, G. Andrei, R. Snoeck, M. Hosoya, R. Pauwels, J. Balzarini, E. De Clercq, Antivir. Chem. Chemother. 2, 171–179 (1991)CrossRefGoogle Scholar
  44. 44.
    T. Pohle, W. Domschke, Thromb. Res. 99, 377–388 (2000)Google Scholar
  45. 45.
    N. Ohno, T. Miura, N.N. Miura, Y. Adachi, T. Yadomae, Carbohydr. Polym. (2001)Google Scholar
  46. 46.
    Y. LI, L. Fang, K. Zhang, Carbohydr. Polym. 68, 323–328 (2007)CrossRefGoogle Scholar
  47. 47.
    C. Tian, X. Zha, L. Pan, J. Luo, Fitoterapia 91, 247–255 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Xiaolin Zou
    • 1
  • Yongxiao Liu
    • 2
  • Cui Tao
    • 1
  • Ya Liu
    • 1
  • Mei Liu
    • 1
  • Jian Wu
    • 1
  • Zhaolin Lv
    • 3
  1. 1.College of Biological Sciences and BiotechnologyBeijing Forestry UniversityBeijingChina
  2. 2.The Affiliated High School of Peking UniversityBeijingChina
  3. 3.The Analysis CenterBeijing Forestry UniversityBeijingChina

Personalised recommendations