Skip to main content
Log in

The Quasispecies for the Wright–Fisher Model

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

We consider the classical Wright–Fisher model of population genetics. We prove the existence of an error threshold for the mutation probability per nucleotide, below which a quasispecies is formed. We show a new phenomenon, specific to a finite population model, namely the existence of a population threshold: to ensure the stability of the quasispecies, the population size has to be at least of the same order as the genome length. We derive an explicit formula describing the quasispecies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, J. P., Daifuku, R., & Loeb, L. A. (2004). Viral error catastrophe by mutagenic nucleosides. Annual Review of Microbiology, 58(1), 183205.

    Article  CAS  Google Scholar 

  • Cerf, R. (2015). Critical population and error threshold on the sharp peak landscape for a Moran model. Memoirs of the American Mathematical Society, 233(1096), vi+87.

    Article  Google Scholar 

  • Cerf, R. (2015). Critical population and error threshold on the sharp peak landscape for the Wright–Fisher model. Annals of Applied Probability, 25(4), 1936–1992.

    Article  Google Scholar 

  • Cerf, R., & Dalmau, J. (2016). The distribution of the quasispecies for a Moran model on the sharp peak landscape. Stochastic Processes and Their Applications, 126(6), 1681–1709.

    Article  Google Scholar 

  • Crotty, S., Cameron, C. E., & Andino, R. (2001). RNA virus error catastrophe: Direct molecular test by using ribavirin. Proceedings of the National Academy of Sciences, 98(12), 68956900.

    Article  Google Scholar 

  • Dalmau, J. (2015). The distribution of the quasispecies for the Wright–Fisher model on the sharp peak landscape. Stochastic Processes and Their Applications, 125(1), 272–293.

    Article  Google Scholar 

  • Domingo, E. (2002). Quasispecies theory in virology. Journal of Virology, 76(1), 463–465.

    Article  PubMed Central  CAS  Google Scholar 

  • Domingo, E., Biebricher, C., Eigen, M., & Holland, J. J. (2001). Quasispecies and RNA virus evolution: Principles and consequences. Austin: Landes Bioscience.

    Google Scholar 

  • Eigen, M. (1971). Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften, 58(10), 465–523.

    Article  PubMed  CAS  Google Scholar 

  • Eigen, M., McCaskill, J., & Schuster, P. (1989). The molecular quasi-species. Advances in Chemical Physics, 75, 149–263.

    CAS  Google Scholar 

  • Elena, S. F., Wilke, C. O., Ofria, C., & Lenski, R. E. (2007). Effects of population size and mutation rate on the evolution of mutational robustness. Evolution, 61(3), 666–674.

    Article  PubMed  Google Scholar 

  • Kac, M. (1947). Random walk and the theory of Brownian motion. American Mathematical Monthly, 54(7), 369–391.

    Article  Google Scholar 

  • Kimura, M. (1985). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nowak, M. A., & Schuster, P. (1989). Error thresholds of replication in finite populations. Mutation frequencies and the onset of Muller’s ratchet. Journal of Theoretical Biology, 137(4), 375–395.

    Article  PubMed  CAS  Google Scholar 

  • Sumedha, Martin, O. C., & Peliti, L. (2007). Population size effects in evolutionary dynamics on neutral networks and toy landscapes. Journal of Statistical Mechanics: Theory and Experiment, 05, P05011.

    Google Scholar 

  • Tripathi, K., Balagam, R., Vishnoi, N. K., & Dixit, N. M. (2012). Stochastic simulations suggest that HIV-1 survives close to its error threshold. PLoS Computational Biology, 8(9), 1–14.

    Article  CAS  Google Scholar 

  • van Nimwegen, E., & Crutchfield, J. (2000). Metastable evolutionary dynamics: Crossing fitness barriers or escaping via neutral paths? Bulletin of Mathematical Biology, 62, 799–848.

    Article  PubMed  Google Scholar 

  • Van Nimwegen, E., Crutchfield, J. P., & Huynen, M. (1999). Neutral evolution of mutational robustness. Proceedings of the National Academy of Sciences of the United States, 96, 9716–9720.

    Article  Google Scholar 

  • Wilke, C. (2005). Quasispecies theory in the context of population genetics. BMC Evolutionary Biology, 5, 1–8.

    Article  Google Scholar 

Download references

Funding

The second author acknowledges that this work was supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseba Dalmau.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerf, R., Dalmau, J. The Quasispecies for the Wright–Fisher Model. Evol Biol 45, 318–323 (2018). https://doi.org/10.1007/s11692-018-9452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-018-9452-0

Keywords

Navigation