Skip to main content

Advertisement

Log in

Bite Force Performance, Fluctuating Asymmetry and Antisymmetry in the Mandible of Inbred and Outbred Wild-Derived Strains of Mice (Mus musculus domesticus)

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Developmental instability, as measured by fluctuating asymmetry is generally considered to increase with genetic and environmental stresses. Few studies have, however, addressed the role of asymmetry in altering organism performance. Here, we measured bite force performance in three strains of inbred and outbred mice derived from wild ancestors. We quantified size and shape directional, and fluctuating asymmetry, as well as inter-individual variation of their mandibles using geometric morphometrics. We also developed a way to estimate shape antisymmetry, to filter it out of the fluctuating asymmetry component. Contrary to our expectations, we found no significant link between bite force and asymmetry levels. Inbreeding did not produce any clear and significant increase or decrease in neither inter-individual variance, nor fluctuating asymmetry. Furthermore, fluctuating asymmetry levels were unrelated to inter-individual variance levels, although these two types of variation affected the same areas of the mandible. We did not highlight any impact of inbreeding depression on bite force. Fluctuating asymmetry was reduced in the mandible, which we argue may be linked to its functional relevance. We found some significant but very reduced antisymmetry possibly linked to lateralization. This lateralization did not relate to any bite force difference. Our results show that neither inbreeding, nor asymmetry (combining fluctuating, directional asymmetry and antisymmetry) significantly affect bite force performance in mice, and that despite affecting the same morphological regions, developmental stability and canalization are independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Angel, E. H. (1900). Treatment of malocclusion of the teeth and fractures of the maxillae: Angle’s system. Philadelphia: SS White Dental Manufacturing Company.

    Google Scholar 

  • Armbruster, P., & Reed, D. H. (2005). Inbreeding depression in benign and stressful environments. Heredity, 95(3), 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Badyaev, A. V., Foresman, K. R., & Fernandez, M. V. (2000). Stress and developmental stability: Vegetation removal causes increased fluctuating asymmetry in shrews. Ecology, 81(2), 336–345.

    Article  Google Scholar 

  • Ballard, M. L. (1944). Asymmetry in tooth size: A factor in the etiology, diagnosis and treatment of malocclusion. The Angle Orthodontist, 14(3), 67–70.

    Google Scholar 

  • Boell, L., Gregorova, S., Forejt, J., & Tautz, D. (2011). A comparative assessment of mandible shape in a consomic strain panel of the house mouse (Mus musculus)—implications for epistasis and evolvability of quantitative traits. BMC Evolutionary Biology, 11(1), 309.

    Article  PubMed  PubMed Central  Google Scholar 

  • Breuker, C. J., Patterson, J. S., & Klingenberg, C. P. (2006). A single basis for developmental buffering of Drosophila wing shape. PLoS ONE, 1(1), e7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke, G. M. (1998). The genetic basis of developmental stability. V. Inter-and intra-individual character variation. Heredity, 80(5), 562–567.

    Article  Google Scholar 

  • Clarke, G. M., Brand, G. W., & Whitten, M. J. (1986). Fluctuating asymmetry: A technique for measuring developmental stress caused by inbreeding. Australian Journal of Biological Sciences, 39(2), 145–154.

    Article  Google Scholar 

  • Claude, J. (2008). Morphometrics with R. New York: Springer.

    Google Scholar 

  • Collins, R. L. (1991). Reimpressed selective breeding for lateralization of handedness in mice. Brain Research, 564(2), 194–202.

    Article  PubMed  CAS  Google Scholar 

  • Collins, R. L., Sargent, E. E., & Neumann, P. E. (1993). Genetic and behavioral tests of the McManus hypothesis relating response to selection for lateralization of handedness in mice to degree of heterozygosity. Behavior Genetics, 23(4), 413–421.

    Article  PubMed  CAS  Google Scholar 

  • Corti, M., & Rohlf, F. J. (2001). Chromosomal speciation and phenotypic evolution in the house mouse. Biological Journal of the Linnean Society, 73(1), 99–112.

    Article  Google Scholar 

  • Coster, A. (2013). Pedigree: Pedigree functions. R package version 1.4. https://CRAN.R-project.org/package=pedigree. Accessed Nov 2017.

  • Davis, S. J. (1983). Morphometric variation of populations of house mice Mus domesticus in Britain and Faroe. Journal of Zoology, 199(4), 521–534.

    Article  Google Scholar 

  • Debat, V., Alibert, P., David, P., Paradis, E., & Auffray, J. C. (2000). Independence between developmental stability and canalization in the skull of the house mouse. Proceedings of the Royal Society of London B: Biological Sciences, 267(1442), 423–430.

    Article  CAS  Google Scholar 

  • Debat, V., Debelle, A., & Dworkin, I. (2009). Plasticity, canalization, and developmental stability of the Drosophila wing: Joint effects of mutations and developmental temperature. Evolution, 63(11), 2864–2876.

    Article  PubMed  Google Scholar 

  • Fahlke, J. M., Gingerich, P. D., Welsh, R. C., & Wood, A. R. (2011). Cranial asymmetry in Eocene archaeocete whales and the evolution of directional hearing in water. Proceedings of the National Academy of Sciences, 108(35), 14545–14548.

    Article  Google Scholar 

  • Fowler, K., & Whitlock, M. C. (1999). The distribution of phenotypic variance with inbreeding. Evolution, 53(4), 1143–1156.

    Article  PubMed  Google Scholar 

  • Freeman, P. W., & Lemen, C. A. (2008). A simple morphological predictor of bite force in rodents. Journal of Zoology, 275(4), 418–422.

    Article  Google Scholar 

  • Ginot, S., Claude, J., Perez, J., & Veyrunes, F. (2017). Sex-reversal induces size and performance differences among females of the African pygmy mouse Mus minutoides. Journal of Experimental Biology, 220(11), 1947–1951.

    Article  PubMed  Google Scholar 

  • Gonzalez, P. N., Lotto, F. P., & Hallgrímsson, B. (2014). Canalization and developmental instability of the fetal skull in a mouse model of maternal nutritional stress. American Journal of Physical Anthropology, 154(4), 544–553.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, P. N., Pavlicev, M., Mitteroecker, P., Pardo-Manuel de Villena, F., Spritz, R. A., Marcucio, R. S., & Hallgrímsson, B. (2016). Genetic structure of phenotypic robustness in the collaborative cross mouse diallel panel. Journal of Evolutionary Biology, 29(9), 1737–1751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grammer, K., Fink, B., Moller, A. P., & Thornhill, R. (2003). Darwinian aesthetics: Sexual selection and the biology of beauty. Biological Reviews, 78, 385–407.

    Article  PubMed  Google Scholar 

  • Hallgrímsson, B. (1998). Fluctuating asymmetry in the mammalian skeleton. In M.K. Hecht (Ed.), Evolutionary biology (pp. 187–251). Boston: Springer.

    Google Scholar 

  • Herrel, A., De Smet, A., Aguirre, L. F., & Aerts, P. (2008). Morphological and mechanical determinants of bite force in bats: Do muscles matter? Journal of Experimental Biology, 211(1), 86–91.

    Article  PubMed  Google Scholar 

  • Herrel, A., Moore, J. A., Bredeweg, E. M., & Nelson, N. J. (2010). Sexual dimorphism, body size, bite force and male mating success in tuatara. Biological Journal of the Linnean Society, 100(2), 287–292.

    Article  Google Scholar 

  • Herrel, A., Podos, J., Huber, S. K., & Hendry, A. P. (2005). Bite performance and morphology in a population of Darwin’s finches: Implications for the evolution of beak shape. Functional Ecology, 19(1), 43–48.

    Article  Google Scholar 

  • Herrel, A., Spithoven, L., Van Damme, R., & De Vree, F. (1999). Sexual dimorphism of head size in Gallotia galloti: Testing the niche divergence hypothesis by functional analyses. Functional Ecology, 13(3), 289–297.

    Article  Google Scholar 

  • Husak, J. F., Kristopher Lappin, A., Fox, S. F., & Lemos-Espinal, J. A. (2006). Bite-force performance predicts dominance in male venerable collared lizards (Crotaphytus antiquus). Copeia, 2006(2), 301–306.

    Article  Google Scholar 

  • Hutchison, D. W., & Cheverud, J. M. (1995). Fluctuating asymmetry in tamarin (Saguinus) cranial morphology: Intra-and interspecific comparisons between taxa with varying levels of genetic heterozygosity. Journal of Heredity, 86(4), 280–288.

    Article  PubMed  CAS  Google Scholar 

  • Kark, S. (2001). Shifts in bilateral asymmetry within a distribution range: The case of the chukar partridge. Evolution, 55(10), 2088–2096.

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg, C. P., Barluenga, M., & Meyer, A. (2002). Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry. Evolution, 56(10), 1909–1920.

    Article  PubMed  Google Scholar 

  • Klingenberg, C. P., Leamy, L. J., & Cheverud, J. M. (2004). Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics, 166(4), 1909–1921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klingenberg, C. P., & McIntyre, G. S. (1998). Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution, 52(5), 1363–1375.

    Article  PubMed  Google Scholar 

  • Klingenberg, C. P., Mebus, K., & Auffray, J. C. (2003). Developmental integration in a complex morphological structure: How distinct are the modules in the mouse mandible? Evolution & Development, 5(5), 522–531.

    Article  Google Scholar 

  • Kobyliansky, E., & Livshits, G. (1989). Age-dependent changes in morphometric and biochemical traits. Annals of Human Biology, 16(3), 237–247.

    Article  PubMed  CAS  Google Scholar 

  • Kruuk, L. E. B., Slate, J., Pemberton, J. M., & Clutton-Brock, T. H. (2003). Fluctuating asymmetry in a secondary sexual trait: No associations with individual fitness, environmental stress or inbreeding, and no heritability. Journal of Evolutionary Biology, 16(1), 101–113.

    Article  PubMed  CAS  Google Scholar 

  • Lacy, R. C., & Honer, B. E. (1996). Effects of inbreeding on skeletal development of Rattus villosissimus. Journal of Heredity, 87(4), 277–287.

    Article  PubMed  CAS  Google Scholar 

  • Leamy, L. J., Klingenberg, C. P., Sherratt, E., Wolf, J. B., & Cheverud, J. M. (2015). The genetic architecture of fluctuating asymmetry of mandible size and shape in a population of mice: Another look. Symmetry, 7(1), 146–163.

    Article  CAS  Google Scholar 

  • Lerner, I. M. (1954). Genetic homeostasis. Edinburgh: Oliver & Boyd.

    Google Scholar 

  • Levinton, J. S., Judge, M. L., & Kurdziel, J. P. (1995). Functional differences between the major and minor claws of fiddler crabs (Uca, family Ocypodidae, Order Decapoda, Subphylum Crustacea): A result of selection or developmental constraint? Journal of Experimental Marine Biology and Ecology, 193(1–2), 147–160.

    Article  Google Scholar 

  • Logue, S. F., Owen, E. H., Rasmussen, D. L., & Wehner, J. M. (1997). Assessment of locomotor activity, acoustic and tactile startle, and prepulse inhibition of startle in inbred mouse strains and F1 hybrids: Implications of genetic background for single gene and quantitative trait loci analyses. Neuroscience, 80(4), 1075–1086.

    Article  PubMed  CAS  Google Scholar 

  • MacLeod, C. D., Reidenberg, J. S., Weller, M., Santos, M. B., Herman, J., Goold, J., & Pierce, G. J. (2007). Breaking symmetry: The marine environment, prey size, and the evolution of asymmetry in cetacean skulls. The Anatomical Record, 290(6), 539–545.

    Article  PubMed  CAS  Google Scholar 

  • Martín, J., & López, P. (2001). Hindlimb asymmetry reduces escape performance in the lizard Psammodromus algirus. Physiological and Biochemical Zoology, 74(5), 619–624.

    Article  PubMed  Google Scholar 

  • McCarroll, R. S., Naeije, M., & Hansson, T. L. (1989). Balance in masticatory muscle activity during natural chewing and submaximal clenching. Journal of Oral Rehabilitation, 16(5), 441–446.

    Article  PubMed  CAS  Google Scholar 

  • Milton, C. C., Huynh, B., Batterham, P., Rutherford, S. L., & Hoffmann, A. A. (2003). Quantitative trait symmetry independent of Hsp90 buffering: Distinct modes of genetic canalization and developmental stability. Proceedings of the National Academy of Sciences, 100(23), 13396–13401.

    Article  CAS  Google Scholar 

  • Møller, A. P. (1994). Directional selection on directional asymmetry: Testes size and secondary sexual characters in birds. Proceedings of the Royal Society of London B: Biological Sciences, 258(1352), 147–151.

    Article  Google Scholar 

  • Møller, A. P., & Pomiankowski, A. (1993). Fluctuating asymmetry and sexual selection. Genetica, 89(1–3), 267.

    Article  Google Scholar 

  • Morgan, K. N., & Tromborg, C. T. (2007). Sources of stress in captivity. Applied Animal Behaviour Science, 102(3), 262–302.

    Article  Google Scholar 

  • Mousseau, T. A., & Roff, D. A. (1987). Natural selection and the heritability of fitness components. Heredity, 59(Pt 2), 181–197.

    Article  PubMed  Google Scholar 

  • Naeije, M., McCarroll, R. S., & Weijs, W. A. (1989). Electromyographic activity of the human masticatory muscles during submaximal clenching in the inter-cuspal position. Journal of Oral Rehabilitation, 16(1), 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Nissan, J., Gross, M. D., Shifman, A., Tzadok, L., & Assif, D. (2004). Chewing side preference as a type of hemispheric laterality. Journal of Oral Rehabilitation, 31(5), 412–416.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, A. R. (1994). Fluctuating asymmetry analyses: A primer. In T. Markow (Ed.), Developmental instability: Its origins and evolutionary implications (pp. 335–364). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Palmer, A. R. (1999). Detecting publication bias in meta-analyses: A case study of fluctuating asymmetry and sexual selection. The American Naturalist, 154(2), 220–233.

    PubMed  Google Scholar 

  • Pirttiniemi, P. (1998). Normal and increased functional asymmetries in the craniofacial area. Acta Odontologica Scandinavica, 56(6), 342–345.

    Article  PubMed  CAS  Google Scholar 

  • Pirttiniemi, P., & Kantomaa, T. (1992). Relation of glenoid fossa morphology to mandibulofacial asymmetry, studied in dry human Lapp skulls. Acta Odontologica Scandinavica, 50(4), 235–243.

    Article  PubMed  CAS  Google Scholar 

  • R Core Team. (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Réale, D., & Roff, D. A. (2003). Inbreeding, developmental stability, and canalization in the sand cricket Gryllus firmus. Evolution, 57(3), 597–605.

    Article  PubMed  Google Scholar 

  • Renaud, S. (2005). First upper molar and mandible shape of wood mice (Apodemus sylvaticus) from northern Germany: Ageing, habitat and insularity. Mammalian Biology-Zeitschrift für Säugetierkunde, 70(3), 157–170.

    Article  Google Scholar 

  • Renaud, S., Auffray, J.-C., & de La Porte, S. (2010). Epigenetic effects on the mouse mandible: Common features and discrepancies in remodeling due to muscular dystrophy and response to food consistency. BMC Evolutionary Biology, 10, 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivera, G., & Claude, J. (2008). Environmental media and shape asymmetry: A case study on turtle shells. Biological Journal of the Linnean Society, 94(3), 483–489.

    Article  Google Scholar 

  • Rohlf, F. J. (2010). tpsDig v2. 16. New York: Department of Ecology and Evolution, State University of New York, Stony Brook.

    Google Scholar 

  • Rovira-Lastra, B., Flores-Orozco, E. I., Salsench, J., Peraire, M., & Martinez-Gomis, J. (2014). Is the side with the best masticatory performance selected for chewing? Archives of Oral Biology, 59(12), 1316–1320.

    Article  PubMed  Google Scholar 

  • Siegel, M. I., & Doyle, W. J. (1975). Stress and fluctuating limb asymmetry in various species of rodents. Growth, 39(3), 363–369.

    PubMed  CAS  Google Scholar 

  • Sumner, F. B., & Huestis, R. R. (1921). Bilateral asymmetry and its relation to certain problems of genetics. Genetics, 6(5), 445.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Swaddle, J. P., & Witter, M. S. (1998). Cluttered habitats reduce wing asymmetry and increase flight performance in European starlings. Behavioral Ecology and Sociobiology, 42(4), 281–287.

    Article  Google Scholar 

  • Swaddle, J. P., Witter, M. S., & Cuthill, I. C. (1994). The analysis of fluctuating asymmetry. Animal Behaviour, 48(4), 986–989.

    Article  Google Scholar 

  • Tang, X., Orchard, S. M., & Sanford, L. D. (2002). Home cage activity and behavioral performance in inbred and hybrid mice. Behavioural Brain Research, 136(2), 555–569.

    Article  PubMed  Google Scholar 

  • Valenzuela-Lamas, S., Baylac, M., Cucchi, T., & Vigne, J.-D. (2011). House mouse dispersal in Iron Age Spain: A geometric morphometrics appraisal. Biological Journal of the Linnean Society, 102, 483–497.

    Article  Google Scholar 

  • Van Dongen, S., Lens, L., & Molenberghs, G. (1999). Mixture analysis of asymmetry: Modelling directional asymmetry, antisymmetry and heterogeneity in fluctuating asymmetry. Ecology Letters, 2, 387–396.

    Article  Google Scholar 

  • Van Valen, L. (1962). A study of fluctuating asymmetry. Evolution, 16(2), 125–142.

    Article  Google Scholar 

  • Vervust, B., Van Dongen, S., Grbac, I., & Van Damme, R. (2008). Fluctuating asymmetry, physiological performance, and stress in island populations of the Italian Wall Lizard (Podarcis sicula). Journal of Herpetology, 42(2), 369–377.

    Article  Google Scholar 

  • Verwaijen, D., Van Damme, R., & Herrel, A. (2002). Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards. Functional Ecology, 16(6), 842–850.

    Article  Google Scholar 

  • Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150(3811), 563–565.

    Article  Google Scholar 

  • Waddington, C. H. (1957). The strategy of the genes. A discussion of some aspects of theoretical biology. With an appendix by H. Kacser. London: George Allen & Unwin, Ltd.

  • Weijs, W. A. (1975). Mandibular movements of the albino rat during feeding. Journal of Morphology, 145(1), 107–124.

    Article  PubMed  CAS  Google Scholar 

  • Weijs, W. A., & Dantuma, R. (1975). Electromyography and mechanics of mastication in the albino rat. Journal of Morphology, 146(1), 1–33.

    Article  PubMed  CAS  Google Scholar 

  • Woo, T. L. (1931). On the asymmetry of the human skull. Biometrika, 22, 324–352.

    Article  Google Scholar 

  • Zamanlu, M., Khamnei, S., SalariLak, S., Oskoee, S. S., Shakouri, S. K., Houshyar, Y., & Salekzamani, Y. (2012). Chewing side preference in first and all mastication cycles for hard and soft morsels. International Journal of Clinical and Experimental Medicine, 5(4), 326.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Jean-Christophe Auffray, Annie Orth, Josette Catalan, Pascale Chevret, Lionel Hautier, who constituted the fieldwork team to the Orkney Archipelago, where the mice originally came from and Roohollah Siahsarvie who took care of the lab colony until 2014. We are also grateful to Sabrina Renaud for leading the project which allowed to start the colony, and for her important comments on the early versions of the manuscript. Finally, we thank one anonymous reviewer for suggesting several interesting ways to improve the manuscript. This publication is a contribution of the Institut des Sciences de l’Evolution de Montpellier (UMR 5554 – UM + CNRS + IRD) No. ISEM 2018-064. This study was supported by the ANR Project Bigtooth (ANR-11-BSV7-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Ginot.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

11692_2018_9450_MOESM1_ESM.eps

Supplementary material 1. Fig. 1 Shape asymmetry differences between sexes in the different groups of this study. (EPS 10 KB)

Supplementary material 2 (XLS 11 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginot, S., Agret, S. & Claude, J. Bite Force Performance, Fluctuating Asymmetry and Antisymmetry in the Mandible of Inbred and Outbred Wild-Derived Strains of Mice (Mus musculus domesticus). Evol Biol 45, 287–302 (2018). https://doi.org/10.1007/s11692-018-9450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-018-9450-2

Keywords

Navigation