Skip to main content
Log in

Viviparity Advantages in the Lizard Liolaemus sarmientoi from the End of the World

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Two hypotheses have prevailed to explain the evolution of viviparity in reptiles: the first proposed that viviparity evolved in response to cold-climates because the possibility of pregnant females to thermoregulate at higher temperatures than embryos could experience in a nest in nature. The second hypothesis posits that the advantage of viviparity is based on the possibility of females to maintain stable body temperatures during development, enhancing offspring fitness. With the aim to contribute to understanding the origins of viviparity in reptiles, we experimentally subjected pregnant females of the austral lizard Liolaemus sarmientoi to two temperature treatments until parturition: one that simulated environmental temperatures for a potential nest (17–25 °C) and another that allowed females to thermoregulate at their preferred body temperature (17–45 °C). Then, we analysed newborn body conditions and their locomotor performance to estimate their fitness. In addition, we measured the body temperature in the field and the preferred temperature in the laboratory of pregnant and non-pregnant females. Pregnant females thermoregulated to achieve higher temperatures than the environmental temperatures, and also thermoregulated within a narrower range than non-pregnant females. This could have allowed embryos to develop in higher and more stable temperatures than they would experience in a nest in nature. Thus, offspring developed at the female preferred temperature showed greater fitness and were born earlier in the season than those developed at lower environmental temperatures. Herein, we show that results are in agreement with the two hypotheses of the origin of viviparity for one of the southernmost lizards of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar, C., Wood, P. L. Jr., Cusi, J. C., Guzman, A., Huari, F., Lundberg, M., et al. (2013). Integrative taxonomy and preliminary assessment of species limits in the Liolaemus walkeri complex (Squamata, Liolaemidae) with descriptions of three new species from Peru. ZooKeys, 364, 47–91.

    Article  Google Scholar 

  • Angilletta, M. J. Jr., Niewiarowski, P. H., & Navas, C. A. (2002). The evolution of thermal physiology in ectotherms. Journal of Thermal Biology, 27, 249–268.

    Article  Google Scholar 

  • Aparicio, J., & Ocampo, M. (2010). Liolaemus grupo montanus Etheridge, 1995 (Iguania-Liolaemidae). Cuadernos de Herpetología, 24, 133–135.

    Google Scholar 

  • Atkins, N., Swain, R., Wapstra, E., & Jones, S. M. (2007). Late stage deferral of parturition in the viviparous lizard Niveoscincus occellatus (Gray, 1845): Implications for offspring quality and survival. Biological Journal of the Linnean Society, 90, 735–746.

    Article  Google Scholar 

  • Bauwens, D., Hertz, P. E., & Castilla, A. M. (1996). Thermoregulation in a lacertid lizard: The relative contributions of distinct behavioral mechanisms. Ecology, 77, 1818–1830.

    Article  Google Scholar 

  • Blackburn, D. G. (1982). Evolutionary origins of viviparity in the Reptilia. I. Sauria. Amphibia-Reptilia, 3, 185–205.

    Article  Google Scholar 

  • Blackburn, D. G. (2000). Reptilian viviparity: Past research, future directions, and appropriate models. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 127, 391–409.

    Article  CAS  Google Scholar 

  • Blackburn, D. G. (2015). Evolution of viviparity in Squamate reptiles: Reversibility reconsidered. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 324(6), 473–486.

    Article  Google Scholar 

  • Booth, D. T., Thompson, M. B., & Herring, S. (2000). How incubation temperature influences the physiology and growth of embryonic lizards. Journal of Comparative Physiology B, 170, 269–276.

    Article  CAS  Google Scholar 

  • Bottari, C. V. (1975). Sobre la presencia de Liolaemus magellanicus en Tierra del Fuego, Argentina (Reptilia Iguanidae). PHYSIS, 34, 211–213.

    Google Scholar 

  • Braña, F., & Ji, X. (2007). The selective basis for increased egg retention: Early incubation temperature determines hatchling phenotype in wall lizards (Podarcis muralis). Biological Journal of the Linnean Society, 92, 441–447.

    Article  Google Scholar 

  • Breitman, M. F., Minoli, I., Avila, L. J., Medina, C. D., Sites, J. W. Jr., & Morando, M. (2014). Lagartijas de la provincia de Santa Cruz, Argentina: Distribución geográfica, diversidad genética y estado de conservación. Cuadernos de Herpetología, 28, 83–110.

    Google Scholar 

  • Cadby, C. D., Jones, S. M., & Wapstra, E. (2014). Geographical differences in maternal basking behaviour and offspring growth rate in a climatically widespread viviparous reptile. Journal of Experimental Biology, 217, 1175–1179.

    Article  PubMed  Google Scholar 

  • Cei, J. M. (1986). Reptiles del Centro-oeste y Sur de la Argentina. Herpetofauna de las Zonas Aridas y Semiáridas, first ed. Torino: Museo Regionale di Scienze Naturali, Monografía IV.

  • Charland, M. B. (1995). Thermal consequences of reptilian viviparity: Thermoregulation in gravid and nongravid garter snakes (Thamnophis). Journal of Herpetology, 29, 383–390.

    Article  Google Scholar 

  • Charland, M. B., & Gregory, P. T. (1990). The influence of female reproductive status on thermoregulation in a viviparous snake, Crotalus viridis. Copeia, 4, 1089–1098.

    Article  Google Scholar 

  • Chiaraviglio, M. (2006). The effects of reproductive condition on thermoregulation in the Argentina Boa Constrictor (Boa constrictor occidentalis) (Boidae). Herpetological Monographs, 20, 172–177.

    Article  Google Scholar 

  • Crews, D., & Gans, C. (1992). The interaction of hormones, brain, and behavior: An emerging discipline in herpetology. In C. Gans & D. Crews (Eds.), Biology of the Reptilia (pp.<background-color:#96C864;> </background-color:#96C864;>1–23). Chicago: The University of Chicago Press.

    Google Scholar 

  • Cruz, F. B., Belver, L., Acosta, J. C., Villavicencio, H. J., Blanco, G., & Cánovas, M. G. (2009). Thermal biology of Phymaturus lizards: Evolutionary constraints or lack of environmental variation? Zoology, 112, 425–432.

    Article  PubMed  Google Scholar 

  • Dayananda, B., Gray, S., Pike, D., & Webb, J. K. (2016). Communal nesting under climate change: Fitness consequences of higher incubation temperatures for a nocturnal lizard. Global Change Biology, 22, 2405–2414.

    Article  PubMed  Google Scholar 

  • Deeming, D. C. (2004). Reptilian incubation: Environment, evolution and behaviour. Nottingham: Nottingham University Press.

    Google Scholar 

  • Donoso-Barros, R. (1973). Una nueva lagartija magallánica (Reptilia, Iguanidae). Neotropica, 19, 163–164.

    Google Scholar 

  • Du, W.-G., & Ji, X. (2003). The effects of incubation thermal environments on size, locomotor performance and early growth of hatchling soft-shelled turtles, Pelodiscus sinensis. Journal of Thermal Biology, 26, 279–286.

    Article  Google Scholar 

  • Elphick, M. J., & Shine, R. (1998). Longterm effects of incubation temperatures on the morphology and locomotor performance of hatchling lizards (Bassiana duperreyi, Scincidae). Biological Journal of the Linnean Society, 63, 429–447.

    Article  Google Scholar 

  • Fernández, J. B., Medina, S. M., Kubisch, E. L., Manero, A. A., Scolaro, J. A., & Ibargüengoytía, N. R. (2015). Female reproductive biology of the lizards Liolaemus sarmientoi and L. magellanicus from the southern end of the world. Herpetological Journal, 25, 101–108.

    Google Scholar 

  • Fernández, J. B., Smith, J. Jr., Scolaro, A., & Ibargüengoytía, N. R. (2011). Performance and thermal sensitivity of the southernmost lizards in the world, Liolaemus sarmientoi and Liolaemus magellanicus. Journal of Thermal Biology, 36, 15–22.

    Article  Google Scholar 

  • Gao, J. F., Qu, Y. F., Luo, L. G., & Ji, X. (2010). Evolution of reptilian viviparity: A test of the maternal manipulation hypothesis in a temperate snake, Gloydius brevicaudus (Viperidae). Zoological Science, 27, 248–255.

    Article  PubMed  Google Scholar 

  • Guillette, J. L. Jr., DeMarco, V., & Palmer, B. D. (1991). Exogenous progesterone or indomethacin delays parturition in the viviparous lizard Sceloporus jarrovi. General and Comparative Endocrinology, 81, 105–112.

    Article  CAS  PubMed  Google Scholar 

  • Hertz, P. E., Huey, R., & Stevenson, R. D. (1993). Evaluating temperature regulation by field-active ectotherms: The fallacy of the inappropriate question. American Naturalist, 142, 796–818.

    Article  CAS  PubMed  Google Scholar 

  • Huey, R. B., Deutsh, C. A., Tewksbury, J. J., Vitt, L. J., Hertz, P. E., Álvarez-Pérez, H. J., & Garland, T. (2009). Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society of London B: Biological Sciences, 276, 1939–1948.

    Article  Google Scholar 

  • Ibargüengoytía, N. R., Medina, S. M., Fernández, J. B., Gutiérrez, J. A., Tappari, F., & Scolaro, A. (2010). Thermal biology of the southernmost lizards in the world: Liolaemus sarmientoi and Liolaemus magellanicus from Patagonia, Argentina. Journal of Thermal Biology, 35, 21–27.

    Article  Google Scholar 

  • Ji, X., Chen, F., Du, W. G., & Chen, H. L. (2003). Incubation temperature affects hatchling growth but not sexual phenotype in the Chinese soft-shelled turtle, Pelodiscus sinensis (Trionychidae). Journal of Zoology, 261, 409–416.

    Article  Google Scholar 

  • Ji, X., Gao, J. F., & Han, J. (2007a). Phenotypic responses of hatchlings to constant versus fluctuating incubation temperatures in the multi-banded krait, Bungarus multicintus (Elapidae). Zoological Science, 24, 384–390.

    Article  PubMed  Google Scholar 

  • Ji, X., Lin, C. X., Lin, L. H., Qiu, Q. B., & Du, Y. (2007b). Evolution of viviparity in warm-climate lizards: An experimental test of the maternal manipulation hypothesis. Journal of Evolutionary Biology, 20, 1037–1045.

    Article  CAS  PubMed  Google Scholar 

  • Kubisch, E. L., Corbalán, V., Ibargüengoytía, N. R., & Sinervo, B. (2016). Local extinction risk of three species of lizards from Patagonia as a result of global warming. Canadian Journal of Zoology, 94, 49–59.

    Article  Google Scholar 

  • Kubisch, E. L., Fernández, J. B., & Ibargüengoytía, N. R. (2011). Is locomotor performance optimized at preferred body temperature? A study of Liolaemus pictus argentinus from northern Patagonia, Argentina. Journal of Thermal Biology, 36, 328–333.

    Article  Google Scholar 

  • Lambert, S. M., & Wiens, J. J. (2013). Evolution of viviparity: A phylogenetic test of the cold climate hypothesis in phrynosomatid lizards. Evolution, 67, 2614–2630.

    Article  PubMed  Google Scholar 

  • Legendre, P. (2015). Lmodel2: Model II Regression. R package version 1.7-2. https://cran.rproject.org/web/packages/lmodel2/index.html/.

  • Lemus, D., Illanes, J., Fuenzalida, M., Paz-De la Vega, Y., & García, M. (1981). Comparative analysis of the development of the lizard, Liolaemus tenuis tenuis. II A series of normal postlaying stages in embryonic development. Journal of Morphology, 169, 337–349.

    Article  Google Scholar 

  • Li, H., Qu, Y. F., Hu, R. B., & Ji, X. (2009). Evolution of viviparity in cold-climate lizards: Testing the maternal manipulation hypothesis. Evolutionary Ecology, 23, 777–790.

    Article  Google Scholar 

  • Lin, C. X., Zhang, L., & Ji, X. (2008). Influence of pregnancy on locomotor and feeding performances of the skink, Mabuya multifasciata: Why do females shift thermal preferences when pregnant? Zoology, 111, 188–195.

    Article  PubMed  Google Scholar 

  • Lindgren, J. (2004). UV-lamps for terrariums: Their spectral characteristics and efficiency in promoting vitamin D3 synthesis by UVB irradiation. Herpetomania, 2004, 13–20.

    Google Scholar 

  • Lorioux, S., DeNardo, D. F., Gorelick, R., & Lourdais, O. (2012). Maternal influences on early development: Preferred temperature prior to oviposition hastens embryogenesis and enhances offspring traits in the Children’s python, Antaresia childreni. Journal of Experimental Biology, 215, 1346–1353.

    Article  PubMed  Google Scholar 

  • Lourdais, O., Shine, R., Bonnet, X., Guillon, M., & Naulleau, G. (2004). Climate affects offspring phenotypes in a viviparous snake. Oikos, 104, 551–560.

    Article  Google Scholar 

  • Mathies, T., & Andrews, R. M. (1997). Influence of pregnancy on the thermal biology of the Lizard, Scleroporus jarrovi: Why do pregnant females exhibit low body temperatures? Functional Ecology, 11, 498–507.

    Article  Google Scholar 

  • Medina, M., Gutiérrez, J., Scolaro, A., & Ibargüengoytía, N. R. (2009). Thermal responses to environmental constraints in two populations of the oviparous lizard Liolaemus bibronii in Patagonia, Argentina. Journal of Thermal Biology, 37, 579–586.

    Article  Google Scholar 

  • Medina, M., Scolaro, A., Méndez-De la Cruz, F. R., Sinervo, B. R., Miles, D. B., & Ibargüengoytía, N. R. (2012). Thermal biology of genus Liolaemus: A phylogenetic approach reveals advantages of the genus to survive climate change. Journal of Thermal Biology, 37, 579–586.

    Article  Google Scholar 

  • Mell, R. (1929). Beiträge zur fauna sinica. IV. Grundzüge einer okologie der chinesischen reptilien und einer herpetologischen tiergeographie Chinas. Berlin: Walter de Gruyter.

    Google Scholar 

  • Moreno-Azócar, D. L., Vanhooydonck, B., Bonino, M. F., Perotti, M. G., Abdala, C. S., Schulte, J. A., & Cruz, F. B. (2013). Chasing the Patagonian sun: Comparative thermal biology of Liolaemus lizards. Oecologia, 171, 773–788.

    Article  Google Scholar 

  • O’Donnell, R. P., & Arnold, S. J. (2005). Evidence for selection on thermoregulation: Effects of temperature on embryo mortality in the garter snake Thamnophis elegans. Copeia, 2005, 929–933.

    Google Scholar 

  • Olsson, M., Shine, R., & Bak-Olsoon, E. (2000). Locomotor impairment of gravid lizards: Is the burden physical or physiological? Journal of Evolutionary Biology, 13, 263–268.

    Article  Google Scholar 

  • Packard, G. C., Tracy, C. R., & Roth, J. J. (1977). The physiological ecology of reptilian eggs and embryos, and the evolution of viviparity within the class Reptilia. Biological Reviews, 52, 71–105.

    Article  CAS  PubMed  Google Scholar 

  • Paranjpe, D. A., Bastiaans, E., Patten, A., Cooper, R. D., & Sinervo, B. (2013). Evidence of maternal effects on temperature preference in side-blotched lizards: Implications for evolutionary response to climate change. Ecology and Evolution, 3, 1977–1991.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peig, J., & Green, A. J. (2009). New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos, 118, 1883–1891.

    Article  Google Scholar 

  • Peig, J., & Green, A. J. (2010). The paradigm of body condition: A critical reappraisal of current methods based on mass and length. Functional. Ecology, 24, 1323–1332.

    Article  Google Scholar 

  • Qualls, C. P., & Andrews, R. M. (1999). Cold climates and the evolution of viviparity in reptiles: Cold incubation temperatures produce poor-quality offspring in the lizard, Sceloporus virgatus. Biological Journal of the Linnean Society, 67, 353–376.

    Google Scholar 

  • Qualls, F. J., & Shine, R. (1998). Lerista bougainvillii, a case study for the evolution of viviparity in reptiles. Journal of Evolutionary Biology, 11, 63–78.

    Article  Google Scholar 

  • R Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/.

  • Rock, J., & Cree, A. (2003). Intraspecific variation in the effect of temperature on pregnancy in the viviparous gecko Hoplodactylus maculatus. Herpetologica, 59, 8–22.

    Article  Google Scholar 

  • Rodríguez-Díaz, T., González, F., Ji, X., & Braña, F. (2010). Effects of incubation temperature on hatchling phenotypes in an oviparous lizard with prolonged egg retention: Are the two main hypotheses on the evolution of viviparity compatible? Zoology, 113, 33–38.

    Article  PubMed  Google Scholar 

  • Schulte, J. A., Macey, J. R., Espinoza, R. E., & Larson, A. (2000). Phylogenetic relationships in the iguanid lizard genus Liolaemus: Multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal. Biological Journal of the Linnean Society, 69, 75–102.

    Article  Google Scholar 

  • Scolaro, J. A., & Cei, J. M. (1997). Systematic status and relationships of Liolaemus species of the archeforus and kingii groups: Morphological and taxonumerical approach (Reptilia: Tropiduridae). Bolletin del Museo Regionale di Scienze Naturali Torino, 15, 369–406.

    Google Scholar 

  • Shine, R. (1983). Reptilian viviparity in cold climates: Testing the assumptions of an evolutionary hypothesis. Oecologia, 57, 397–405.

    Article  PubMed  Google Scholar 

  • Shine, R. (1985). The evolution of viviparity in reptiles: An ecological analysis. Biol. Reptilia, 15, 605–694.

    Google Scholar 

  • Shine, R. (1995). A new hypothesis for the evolution of viviparity in reptiles. American Naturalist, 145, 809–823.

    Article  Google Scholar 

  • Shine, R. (2004). Does viviparity evolve in cold climate reptiles because pregnant females maintain stable (not high) body temperatures? Evolution, 58, 1809–1818.

    Article  PubMed  Google Scholar 

  • Shine, R., & Bull, J. J. (1979). The evolution of live-bearing in lizards and snakes. American Naturalist, 1979, 905–923.

    Article  Google Scholar 

  • Shine, R., & Downes, S. J. (1999). Can pregnant lizards adjusts their offspring phenotypes to environmental conditions? Oecologia, 119, 1–8.

    Article  PubMed  Google Scholar 

  • Shine, R., & Elphick, M. J. (2001). The effect of short-term weather fluctuations on temperatures inside lizard nests, and on the phenotypic traits of hatchling lizards. Biological Journal of the Linnean Society, 72, 555–565.

    Google Scholar 

  • Sinervo, B., Hedges, R., & Adolph, S. C. (1991). Decreased sprint speed as a cost of reproduction in the lizard Sceloporus occidentalis: Variation among populations. Journal of Experimental Biology, 155, 323–336.

    Google Scholar 

  • Stewart, J. R., & Blackburn, D. G. (2014). Viviparity and placentation in lizards. In J. L. Rheubert, D. S. Siegel & S. E. Trauth (Eds.), Reproductive biology and phylogeny of lizards and tuatara (pp. 448–563). Vol 10 of Series: B. G. M. Jamieson (Ed.), Reproductive Biology and Phylogeny. Boca Raton: CRC Press.

  • Tu, M. C., & Hutchison, V. H. (1994). Influence of pregnancy on thermoregulation of water snakes (Nerodia rhombifera). Journal of Thermal Biology, 19, 255–259.

    Article  Google Scholar 

  • Van Damme, R., Bauwens, D., & Verheyen, R. F. (1989). Effect of relative clutch mass on sprint speed in the lizard Lacerta vivipara. Journal of Herpetology, 23, 459–461.

    Article  Google Scholar 

  • Wang, Z., Lu, H. L., Ma, L., & Ji, X. (2014). Viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation. Oecologia, 174, 639–649.

    Article  PubMed  Google Scholar 

  • Wapstra, E. (2000). Maternal basking opportunity affects juvenile phenotype in a viviparous lizard. Functional Ecolology, 14, 345–352.

    Article  Google Scholar 

  • Wapstra, E., Uller, T., While, G. M., Olsson, M., & Shine, R. (2010). Giving offspring a head start in life: Field and experimental evidence for selection on maternal basking behaviour in lizards. Journal of Evolutionary Biology, 23, 651–657.

    Article  CAS  PubMed  Google Scholar 

  • Webb, J. K., Shine, R., & Christian, K. A. (2006). The adaptive significance of reptilian viviparity in the tropics: Testing the maternal manipulation hypothesis. Evolution, 60, 115–122.

    PubMed  Google Scholar 

  • Woolrich-Piña, G. A., Smith, G. R., Lemos-Espinal, J. A., & Ramírez-Silva, J. P. (2015). Do gravid female Anolis nebulosus thermoregulate differently than males and non-gravid females? Journal of Thermal Biology, 52, 84–89.

    Article  PubMed  Google Scholar 

  • Yan, X. F., Tang, X. L., Yue, F., Zhang, D. J., Xin, Y., Wang, C., & Chen, Q. (2011). Influence of ambient temperature on maternal thermoregulation and neonate phenotypes in a viviparous lizard, Eremias multiocellata, during the gestation period. Journal of Thermal Biology, 36, 187–192.

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Desimone, R. Fernández and D. D’Arielli for logistical support and for their help in the release of lizards to their capture site. We also thank to M. Cabral, L. Rodriguez and A. Scolaro for providing the access to the study site. This research was supported by the Universidad Nacional del Comahue (CRUB) and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 100271 and RD2702-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimena B. Fernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, J.B., Kubisch, E.L. & Ibargüengoytía, N.R. Viviparity Advantages in the Lizard Liolaemus sarmientoi from the End of the World. Evol Biol 44, 325–338 (2017). https://doi.org/10.1007/s11692-017-9410-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-017-9410-2

Keywords

Navigation