Skip to main content
Log in

Untangling the Tangled Bank: A Novel Method for Partitioning the Effects of Phylogenies and Traits on Ecological Networks

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Understanding how evolutionary and ecological processes shape species interaction networks remains as one of the main challenges in eco-evolutionary studies. Here, we present an integrative analytical framework to partition the effects of phylogenies and functional traits on the structure of ecological networks. The method combines fuzzy set theory and matrix correlation, implemented under a Monte Carlo framework. We designed a simulation study in order to estimate the accuracy of the methods proposed here, measuring Type I Error rates. The simulation study shows that the method is accurate, i.e., incorrectly rejecting a true null hypothesis in ~5% of the cases and falling within the confidence interval. We illustrate our framework using data from a seed dispersal network from southern Brazil. Our analyses suggest that birds must have specific traits in order to consume their plant resources, and that phylogenetic resemblance has no explanatory power for species traits and species interactions in this seed-dispersal network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allesina, S., Alonso, D., & Pascual, M. (2008). A general model for food web structure. Science, 320, 658–661.

    Article  CAS  PubMed  Google Scholar 

  • Angiosperm Phylogeny Group. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105–121.

    Article  Google Scholar 

  • Banks, J. C., & Paterson, A. M. (2005). Multi-host parasite species in cophylogenetic studies. International Journal for Parasitology, 35, 741–746.

    Article  PubMed  Google Scholar 

  • Bersier, L. F., & Kehrli, P. (2008). The signature of phylogenetic constraints on food-web structure. Ecological Complexity, 5, 132–139.

    Article  Google Scholar 

  • Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717–745.

    Article  PubMed  Google Scholar 

  • Camerano, L. (1880). Dell’equilibrio dei viventi merc la reciproca distruzione. Atti della Reale Accademia delle Scienze di Torino, 15, 393–414.

    Google Scholar 

  • Cavender-Bares, J., Kozak, K. H., Fine, P. V., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693–715.

    Article  PubMed  Google Scholar 

  • Cohen, J. E. (1977). Food webs and the dimensionality of trophic niche space. Proceedings of the National Academy of Sciences, 74, 4533–4536.

    Article  CAS  Google Scholar 

  • Cruz, C. P., Fonseca, C. R., & Corso, G. (2012). Ecological interaction and phylogeny, studying functionality on composed networks. Physica A: Statistical Mechanics and its Applications, 391, 673–679.

    Article  Google Scholar 

  • Danielson, B. J. (1991). Communities in a landscape: The influence of habitat heterogeneity on the interactions between species. The American Naturalist, 138, 1105–1120.

    Article  Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection. London: J. Murray.

    Google Scholar 

  • Dáttilo, W., Guimarães, P. R. & Izzo, T. J. (2013). Spatial structure of ant–plant mutualistic networks. Oikos, 122, 1643–1648.

    Article  Google Scholar 

  • Debastiani, V. J., & Duarte, L. S. (2016). Evolutionary models and Phylogenetic signal assessment via mantel test. Evolutionary Biology, 1–9.

  • Debastiani, V. J., & Pillar, V.D. P. (2012). SYNCSA: R tool for analysis of metacommunities based on functional traits and phylogeny of the community components. Bioinformatics (Oxford, England), 28, 2067–2068.

    Article  CAS  Google Scholar 

  • Díaz-Castelazo, C., Guimarães, P. R., Jordano, P., Thompson, J. N., Marquis, R. J., & Rico-Gray, V. (2010). Changes of a mutualistic network over time: Reanalysis over a 10-year period. Ecology, 91, 793–801.

    Article  PubMed  Google Scholar 

  • Eklöf, A., Jacob, U., Kopp, J., et al. (2013). The dimensionality of ecological networks. Ecology Letters, 16, 577–583.

    Article  PubMed  Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125, 1–15.

    Article  Google Scholar 

  • Gómez, J. M., Verdú, M., & Perfectti, F. (2010). Ecological interactions are evolutionarily conserved across the entire tree of life. Nature, 465, 918–921.

    Article  PubMed  Google Scholar 

  • Gross, T., & Blasius, B. (2008). Adaptive coevolutionary networks: A review. Journal of the Royal Society Interface, 5, 259–271.

    Article  Google Scholar 

  • Guimarães, P. R. Jr., Jordano, P., & Thompson, J. N. (2011). Evolution and coevolution in mutualistic networks. Ecology Letters, 14, 877–885.

    Article  PubMed  Google Scholar 

  • Hadfield, J. D., Krasnov, B. R., Poulin, R., & Nakagawa, S. (2014). A tale of two phylogenies: Comparative analyses of ecological interactions. The American Naturalist, 183, 174–187.

    Article  PubMed  Google Scholar 

  • Hansen, T. F. (1997). Stabilizing selection and the comparative analysis of adaptation. Evolution, 51, 1341–1351.

    Article  PubMed  Google Scholar 

  • Harmon, L. J., & Glor, R. E. (2010). Poor statistical performance of the Mantel test in phylogenetic comparative analyses. Evolution, 64(7), 2173–2178.

    PubMed  Google Scholar 

  • Harmon, L. J., Losos, J. B., Jonathan Davies, T., et al. (2010). Early bursts of body size and shape evolution are rare in comparative data. Evolution, 64, 2385–2396.

    PubMed  Google Scholar 

  • Herrera, C. M. (1995). Plant-vertebrate seed dispersal systems in the Mediterranean: Ecological, evolutionary, and historical determinants. Annual Review of Ecology and Systematics, 26, 705–727.

    Article  Google Scholar 

  • Hommola, K., Smith, J. E., Qiu, Y., & Gilks, W. R. (2009). A permutation test of host–parasite cospeciation. Molecular Biology and Evolution, 26, 1457–1468.

    Article  CAS  PubMed  Google Scholar 

  • Howe, H. F. (1993). Specialized and generalized dispersal systems: Where does the paradigm stand? Vegetatio, 107, 3–13.

    Google Scholar 

  • Ibanez, S. (2012). Optimizing size thresholds in a plant–pollinator interaction web: Towards a mechanistic understanding of ecological networks. Oecologia, 170, 233–242.

    Article  PubMed  Google Scholar 

  • Ives, A. R., & Godfray, H.C.J. (2006). Phylogenetic analysis of trophic associations. The American Naturalist, 168, E1–E14.

    Article  CAS  PubMed  Google Scholar 

  • Jermy, T. (1976). Insect–host-plant relationship: Co-evolution or sequential evolution? In Jermy (Ed.), The host-plant in relation to insect behaviour and reproduction (pp. 109–113). New York: Springer.

    Chapter  Google Scholar 

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 49, 444–448.

    Article  Google Scholar 

  • Johansson, J., Nilsson, J. Å., & Jonzén, N. (2015). Phenological change and ecological interactions: An introduction. Oikos, 124, 1–3.

    Article  Google Scholar 

  • Johnson, M.T.J., & Stinchcombe, J. R. (2007). An emerging synthesis between community ecology and evolutionary biology. Trends in Ecology and Evolution, 22, 250–257.

    Article  PubMed  Google Scholar 

  • Jonsson, T. (2014). Trophic links and the relationship between predator and prey body sizes in food webs. Community Ecology, 15, 54–64.

    Article  Google Scholar 

  • Jordano, P. (2000). Fruits and frugivory. In Fenner, P. (Ed.), Seeds: The ecology of regeneration in plant communities (pp. 125–162). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  • Krishna, A., Guimaraes, P. R. Jr., Jordano, P., & Bascompte, J. (2008). A neutral-niche theory of nestedness in mutualistic networks. Oikos, 117, 1609–1618.

    Article  Google Scholar 

  • Lapointe, F. J., & Legendre, P. (1995). Comparison tests for dendrograms: A comparative evaluation. Journal of Classification, 12(2), 265–282.

    Article  Google Scholar 

  • Legendre, P., Desdevises, Y., & Bazin, E. (2002). A statistical test for host–parasite coevolution. Systematic biology, 51, 217–234.

    Article  PubMed  Google Scholar 

  • Legendre, P., & Fortin, M. J. (2010). Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources, 10(5), 831–844.

    Article  PubMed  Google Scholar 

  • Legendre, P., & Legendre, L. F. (2012). Numerical ecology. Amsterdam: Elsevier.

    Google Scholar 

  • Lewinsohn, T. M., Novotny, V., & Basset, Y. (2005). Insects on plants: Diversity of herbivore assemblages revisited. Annual Review of Ecology, Evolution, and Systematics, 36, 597–620.

    Article  Google Scholar 

  • Losos, B. J. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995–1007.

    Article  PubMed  Google Scholar 

  • Maddison, W. P., & Maddison, D. R. (2007). Mesquite: a modular system for evolutionary analysis. Version 2.75. 2011. URL http://mesquiteproject.org.

  • Miranda, M., Parrini, F., & Dalerum, F. (2013). A categorization of recent network approaches to analyse trophic interactions. Methods in Ecology and Evolution, 4, 897–905.

    Google Scholar 

  • Mitter, C., Farrell, B., & Futuyma, D. J. (1991). Phylogenetic studies of insect-plant interactions: Insights into the genesis of diversity. Trends in Ecology and Evolution, 6, 290–293.

    Article  CAS  PubMed  Google Scholar 

  • Morton, E. S. (1973). On the evolutionary advantages and disadvantages of fruit eating in tropical birds. The American Naturalist, 107, 8–22.

    Article  Google Scholar 

  • Mouquet, N., Devictor, V., Meynard, C. N., et al. (2012). Ecophylogenetics: Advances and perspectives. Biological Reviews, 87, 769–785.

    Article  PubMed  Google Scholar 

  • Muller-Landau, H. C., & Hardesty, B. D. (2005). Seed dispersal of woody plants in tropical forests: Concepts, examples and future directions. In D. F. Burslem et al. (Eds.), Biotic interactions in the tropics: Their role in the maintenance of species diversity (pp. 267–309). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Novotny, V., & Basset, Y. (2005). Host specificity of insect herbivores in tropical forests. Proceedings of the Royal Society of London B: Biological Sciences, 272, 1083–1090.

    Article  Google Scholar 

  • Nuismer, S. L., & Harmon, L. J. (2015). Predicting rates of interspecific interaction from phylogenetic trees. Ecology Letters, 18, 17–27.

    Article  PubMed  Google Scholar 

  • Page, R. D. (2003). Tangled trees: Phylogeny, cospeciation, and coevolution. Chicago: University of Chicago Press.

    Google Scholar 

  • Page, R. D., & Charleston, M. A. (1998). Trees within trees: Phylogeny and historical associations. Trends in Ecology and Evolution, 13, 356–359.

    Article  CAS  PubMed  Google Scholar 

  • Paine, R. T. (1980). Food webs: Linkage, interaction strength and community infrastructure. Journal of Animal Ecology, 49, 667–685.

    Article  Google Scholar 

  • Pascual, M., & Dunne, J. A. (2006). Ecological networks: Linking structure to dynamics in food webs. Oxford: Oxford University Press.

    Google Scholar 

  • Pearse, I. S., & Hipp, A. L. (2009). Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proceedings of the National Academy of Sciences, 106, 18097–18102.

    Article  CAS  Google Scholar 

  • Pedron, M., Buzatto, C. R., Singer, R. B., Batista, J. A., & Moser, A. (2012). Pollination biology of four sympatric species of Habenaria (Orchidaceae: Orchidinae) from southern Brazil. Botanical Journal of the Linnean Society, 170, 141–156.

    Article  Google Scholar 

  • Pillar, V. D. (2013). How accurate and powerful are randomization tests in multivariate analysis of variance? Community Ecology, 14, 153–163.

    Article  Google Scholar 

  • Pillar, V. D., & Duarte, L. D.S. (2010). A framework for metacommunity analysis of phylogenetic structure. Ecology Letters, 13(5), 587–596.

    Article  PubMed  Google Scholar 

  • Pillar, V. D. P., Duarte, L. D.S., Sosinski, E. E., & Joner, F. (2009). Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. Journal of Vegetation Science, 20, 334–348.

    Article  Google Scholar 

  • Pillar, V. D. P., & Orlóci, L. (1991). Fuzzy components in community level comparisons. In E. Feoli & L. Orlóci (Eds.), Computer assisted vegetation analysis (pp. 87–93). Berlim: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Podani, J. (2000). Introduction to the exploration of multivariate biological data. Leiden: Backhuys Publishers.

    Google Scholar 

  • Polis, G. A., & Strong, D. R. (1996). Food web complexity and community dynamics. The American Naturalist, 147, 813–846.

    Article  Google Scholar 

  • R Core Team. (2012). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, URL http://www.R-project.org/.

  • Rafferty, N. E., & Ives, A. R. (2013). Phylogenetic trait-based analyses of ecological networks. Ecology, 94, 2321–2333.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezende, E. L., Lavabre, J. E., Guimarães, P. R., Jordano, P., & Bascompte, J. (2007). Non-random coextinctions in phylogenetically structured mutualistic networks. Nature, 448, 925–928.

    Article  CAS  PubMed  Google Scholar 

  • Rossberg, A. G. Brännström, Å., & Dieckmann, U. (2010). How trophic interaction strength depends on traits. Theoretical Ecology, 3, 13–24.

    Article  Google Scholar 

  • Schleuning, M., Fründ, J., & García, D. (2015). Predicting ecosystem functions from biodiversity and mutualistic networks: An extension of trait-based concepts to plant–animal interactions. Ecography, 38, 380–392.

    Article  Google Scholar 

  • Schmitz, O. J., Buchkowski, R. W., Burghardt, K. T., & Donihue, C. M. (2015). Functional traits and trait-mediated interactions: Connecting community-level interactions with ecosystem functioning. Advances in Ecological Research, 52, 319–343.

    Article  Google Scholar 

  • Smouse, P. E., Long, J. C., & Sokal, R. R. (1986). Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology, 35(4), 627–632.

    Article  Google Scholar 

  • Snow, D. W. (1971). Evolutionary aspects of fruit-eating by birds. Ibis, 113, 194–202.

    Article  Google Scholar 

  • Strauss, S. Y., & Irwin, R. E. (2004). Ecological and evolutionary consequences of multispecies plant–animal interactions. Annual Review in Ecology, Evolution and Systematics, 35, 435–466.

    Article  Google Scholar 

  • Thompson, J. N. (1994). The coevolutionary process. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Thompson, J. N. (2005). The geographic mosaic of coevolution. Chicago: University of Chicago Press.

    Google Scholar 

  • Thompson, J. N. (2006). Mutualistic webs of species. Science, 312, 372–373.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J. N. (2014). Coevolution and speciation. In J. Losos. (Ed.), The Princeton guide to evolution (pp. 535–548). Princeton: Princeton University Press.

    Google Scholar 

  • Tylianakis, J. M., Tscharntke, T., & Lewis, O. T. (2007). Habitat modification alters the structure of tropical host–parasitoid food webs. Nature, 445, 202–205.

    Article  CAS  PubMed  Google Scholar 

  • Vázquez, D. P., Blüthgen, N., Cagnolo, L., & Chacoff, N. P. (2009). Uniting pattern and process in plant–animal mutualistic networks: A review. Annals of Botany, 103, 1445–1457.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verdú, M., & Valiente-Banuet, A. (2011). The relative contribution of abundance and phylogeny to the structure of plant facilitation networks. Oikos, 120, 1351–1356.

    Article  Google Scholar 

  • Vizentin-Bugoni, J., Maruyama, P. K., & Sazima, M. (2014). Processes entangling interactions in communities: Forbidden links are more important than abundance in a hummingbird–plant network. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20132397.

    Article  Google Scholar 

  • Webb, C. O. (2000). Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. The American Naturalist, 156, 145–155.

    Article  CAS  PubMed  Google Scholar 

  • Webb, C. O., Ackerly, D. D., & Kembel, S. W. (2008). Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics (Oxford, England), 24, 2098–2100.

    Article  CAS  Google Scholar 

  • Webb, C. O., Ackerly, D. D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475–505.

    Article  Google Scholar 

  • Weiblen, Webb, C, O., Novotny, V., Basset, Y., & Miller, S. E. (2006). Phylogenetic dispersion of host use in a tropical insect herbivore community. Ecology, 87, S62–S75.

    Article  PubMed  Google Scholar 

  • Wikström, N., Savolainen, V., & Chase, M. W. (2001). Evolution of the angiosperms: Calibrating the family tree. Proceedings of the Royal Society of London B: Biological Sciences, 268, 2211–2220.

    Article  Google Scholar 

  • Winemiller, K. O. (1990). Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs, 60, 331–367.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information Control, 8, 338–353.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mathias M. Pires, Michael R. Willig, Milton Mendonça Jr., Rafael A. Dias and Sandy Andelman for kindly reviewing the first draft of this manuscript. Andreas Kindel, Paulo I. K. L. Prado, Sandra C. Müller and two anonymous reviewers provided valuable suggestions that greatly improved this manuscript. We also thank Rafael A. Dias and Guilherme D. dos Santos Seger for all the assistance building the phylogenies. Funding for the development of this project was provided by CAPES-Brazil and by the National Science Foundation (The Dimensions of Biodiversity Distributed Graduate Seminar, Grant #1050680). VAGB received support from CAPES (Grant #1002302). VP received support from CNPq, Brazil (Grant #307689/2014-0). PRG was supported by FAPESP (Grant #2009/54422-8) and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicius A. G. Bastazini.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastazini, V.A.G., Ferreira, P.M.A., Azambuja, B.O. et al. Untangling the Tangled Bank: A Novel Method for Partitioning the Effects of Phylogenies and Traits on Ecological Networks. Evol Biol 44, 312–324 (2017). https://doi.org/10.1007/s11692-017-9409-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-017-9409-8

Keywords

Navigation