Skip to main content

Advertisement

Log in

The Fetal Origin of the Human Chin

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The chin prominence is a hallmark of the modern human face and bears on its labial surface an inverted-T bony relief. Evolutionarily, whether the human chin is an adaptation for mastication or speech is debated but there is little compelling data supporting either claim. Furthermore, some suggest that the inverted-T relief is more important for phylogenetic inference than the chin prominence. However, there is no evidence for the developmental independence of the inverted-T relief and chin prominence. This debate requires empirical data on fetal development of the human chin. Using 3D imaging of the musculo-cervico-craniofacial skeleton of human fetuses and geometric morphometric methods, we discovered a developmental sequence leading to a chin prominence during early fetal development that is very similar to that which we previously observed in postnatal modern humans and in chimpanzee fetuses. Furthermore, we provide the evidence that the inverted-T relief is developmentally integrated with the chin prominence. The evolution of the human chin is constrained by cervico-craniofacial developmental that maintain an unobstructed fetal airway. Finally, the inverted T-relief should be neither treated independently from the chin prominence in phylogenetic analysis, nor is it a relevant taxonomic trait that defines the symphysis of modern humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackermann, R. R. (2002). Patterns of covariation in the hominoid craniofacial skeleton: Implication for paleoanthropological models. Journal of Human Evolution, 42, 147–187.

    Google Scholar 

  • Ackermann, R. R. (2005). Ontogenetic integration of the hominoid face. Journal of Human Evolution, 48, 175–197.

    Article  PubMed  Google Scholar 

  • Aiello, L., & Dean, C. (1990). An introduction to human evolutionary anatomy. New York: Academic Press.

    Google Scholar 

  • Ascenzi, A., & Sergi, A. (1971a). Il giacimento con mandibola neandertaliana di Archi (Reggio Calabria). Accademia Nazionale dei Lincei, 50, 763–771.

    Google Scholar 

  • Ascenzi, A., & Sergi, A. (1971b). A new Neanderthal child mandible from an Upper Pleistocene site in southern Italy. Nature, 233, 280–283.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, S. E., & Hublin, J.-J. (2006). Dental remains from the Grotte du Renne at Arcy-sur-Cure (Yvonne). Journal of Human Evolution, 50, 485–508.

    Article  PubMed  Google Scholar 

  • Biegert, J. (1963). The evaluation of characteristics of the skull, hands and feet for primate taxonomy. In S. L. Washburn (Ed.), Classification and human evolution (pp. 116–145). Chicago: Aldine.

    Google Scholar 

  • Blechschmidt, E. (2004). The ontogenetic basis of human anatomy: the biodynamic approach to development from conception to birth. Berkeley: North Atlantic Books.

    Google Scholar 

  • Boddy, K., & Dawes, G. S. (1975). Fetal breathing. British Medical Bulletin, 31, 3–7.

    Article  CAS  PubMed  Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for landmark data: geometry and biology. Cambridge: University Press.

    Google Scholar 

  • Bookstein, F. L. (1997). Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis, 1, 225–243.

    Article  CAS  PubMed  Google Scholar 

  • Bräuer, G., & Schultz, M. (1996). The morphological affinities of the Plio-Pleistocene mandible from Dmanisi, Georgia. Journal of Human Evolution, 30, 445–481.

    Article  Google Scholar 

  • Carter, D. R. (1987). Mechanical loading history and skeletal biology. Journal of Biomechanics, 20, 1095–1109.

    Article  CAS  PubMed  Google Scholar 

  • Carter, D. R., Wong, M., & Orr, T. E. (1991). Musculoskeletal ontogeny, phylogeny and functional adaptation. Journal of Biomechanics, 24, 3–16.

    Article  PubMed  Google Scholar 

  • Clegg, M. (2012). The evolution of human vocal tract: Specialized for speech? In N. Bannan (Ed.), Music, language & human evolution (pp. 58–80). Oxford: University Press.

    Chapter  Google Scholar 

  • Coquerelle, M., Prados-Frutos, J. C., Benazzi, S., Bookstein, F. L., Senck, S., Mitteroecker, P., & Weber, G. W. (2013a). Infant growth patterns of the mandible in modern humans: A closer exploration of the developmental interactions between the symphyseal bone, the teeth, and the suprahyoid and tongue muscle insertion sites. Journal of Anatomy, 222, 178–192.

    Article  PubMed  Google Scholar 

  • Coquerelle, M., Prados-Frutos, J. C., Rojo, R., Mitteroecker, P., & Bastir, M. (2013b). Short faces, big tongues: Developmental origin of the human chin. PLoS ONE, 8, e81287.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coquerelle, M., Bookstein, F. L., Braga, J., Halazonetis, D. J. & Weber, G.W. (2010). Fetal and infant growth patterns of the mandibular symphysis in modern humans and chimpanzees. Journal of Anatomy, 217, 507–520.

    Article  PubMed  PubMed Central  Google Scholar 

  • Daegling, D. J. (1993). Functional morphology of the human chin. Evolutionary Anthropoly, 1, 170–177.

    Article  Google Scholar 

  • Daegling, D. J. (2012). The human mandible and the origins of speech. Journal of Anthropology, 2012, 1–14.

    Article  Google Scholar 

  • Diewert, V. M. (1983). A morphometric analysis of craniofacial growth and changes in spatial relations during secondary palatal development in human embryos and foetuses. American Journal of Anatomy, 167, 495–522.

    Article  CAS  PubMed  Google Scholar 

  • Diewert, V. M. (1985). Development of human craniofacial morphology during the late embryonic and early fetal periods. American Journal of Orthodontics, 88, 64–76.

    Article  CAS  PubMed  Google Scholar 

  • Dobson, S. D., & Trinkaus, E. (2002). Cross-sectional geometry and morphology of the mandibular symphysis in Middle and Late Pleistocene Homo. Journal of Human Evolution, 43, 67–87.

    Article  PubMed  Google Scholar 

  • DuBrul, L. E., & Sicher, H. (1954). The adaptive chin. Springfield (IL): Charles C Thomas.

    Google Scholar 

  • Duenhoelter, J. H., & Pritchard, J. A. (1976). Fetal respiration: qualitative measurements of amniotic fluid inspired near term by human and rhesus fetuses. American Journal of Obstetrics and Gynecology, 125, 306–309.

    Article  CAS  PubMed  Google Scholar 

  • Enlow, D. H. (1990). Facial growth, 3rd edition. Philadelphia: Saunders.

    Google Scholar 

  • Frayer, D. W., Wolpoff, M. H., Thorne, A. G., Smith, F. H., & Pope, G. G. (1993). Theories of modern human origins: The paleontological test. American Anthropologist, 95, 14–50.

    Article  Google Scholar 

  • Golovanova, L. V., Hoffecker, J. F., Kharitonov, V. M., & Romanova, G. P. (1999). Mezmaiskaya cave: A Neanderthal occupation in the northern Caucasus. Current Anthropology, 40, 77–86.

    Article  Google Scholar 

  • Goodyear, M. D. E., Krleza-Jeric, K., & Lemmens, T. (2007). The Declaration of Helsinki. British Medical Journal, 335, 624–625.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gröning, F., Liu, J., Fagan, M. J., & O’Higgins, P. (2011). Why do humans have chins? Testing the mechanical significance of modern human symphyseal morphology with finite element analysis. American Journal of Physical Anthropology, 144, 593–606.

    Article  PubMed  Google Scholar 

  • Gunz, P., Mitteroecker, P., & Bookstein, F. L. (2005). Semilandmarks in three dimensions. In D. E. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 73–98). New York: Kluwer Academic/Plenum Publishers.

    Chapter  Google Scholar 

  • Hall, B. K. (2005). Bones and cartilage: Developmental and evolutionary skeletal biology. San Diego: Academic Press.

    Google Scholar 

  • Hauschild, M. W. (1925). Die Entstehung der Fossa digastrica und ihre Bedeutung für das menschliche Kinn. Zeitschrift für Morphologie und Anthropologie, 25, 91–108.

    Google Scholar 

  • Hiiemae, K. M., Palmer, J. B., Medicis, S. W., Hegener, J., Jackson, B. S., & Lieberman, D. E. (2002). Hyoid and tongue surface movements in speaking and eating. Archive of Oral Biolology, 47, 11–27.

    Article  Google Scholar 

  • Hohl, T. H. (1983). Masticatory muscle transposition in primates: effects on craniofacial growth. Journal of Maxilofacial Surgery, 11, 149–156.

    Article  CAS  Google Scholar 

  • Holton, N. E., Bonner, L. L., Scott, J. E., Marshall, S. D., Franciscus, R. G., & Southard, T. E. (2015). The ontogeny of the chin: an analysis of allometric and biomechanical scaling. Journal of Anatomy, 226, 549–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H., Xue, R., Zhang, J., Ren, T., Richards, L. J., Yarowsky, P., Miller, M. I., & Mori, S. (2009). Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. Journal of Neuroscience, 29, 4263–4273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huttergger, S., & Mitteroecker, P. (2011). Invariance and meaningfulness in phenotype spaces. Evolutionary Biology, 38, 335–351.

    Article  Google Scholar 

  • Hylander, W. L. (1984). Stress and strain in the mandibular symphysis of primates: A test of competing hypotheses. American Journal of Physical Anthropology, 64, 1–46.

    Article  CAS  PubMed  Google Scholar 

  • Ichim, I., Kieser, J., & Swain, M. (2007). Tongue contractions during speech may have led to the development of the bony geometry of the chin following the evolution of human language: A mechanobiological hypothesis for the development of the human chin. Medical Hypotheses, 69, 20–24.

    Article  PubMed  Google Scholar 

  • Ichim, I., Swain, V. M., & Kieser, J. (2006). Mandibular stiffness in humans: numerical predictions. Journal of Biomechanics, 39, 1903–1913.

    Article  CAS  PubMed  Google Scholar 

  • Kvinnsland, S. (1973). Changes in the foramen magnum axis during human foetal life. Acta Odontologica Scandinavica, 31, 175–178.

    Article  CAS  PubMed  Google Scholar 

  • Lam, Y. M., Pearson, O. M., & Smith, C. M. (1996). Chin morphology and sexual dimorphism in the fossil hominid mandible sample from Klasies River Mouth. American Journal of Physical Anthropology, 100, 545–577.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. K., Kim, Y. S., Oh, H. S., Yang, K. H., Kim, E. C., & Chi, J. G. (2001). Prenatal development of the human mandible. Anatomical Record, 263, 314–325.

    Article  CAS  PubMed  Google Scholar 

  • Lieberman, D. E. (1995). Testing hypotheses about recent human evolution from skulls: Integrating morphology, function, development and phylogeny. Current Anthropology, 36, 159–197.

    Article  Google Scholar 

  • Lieberman, D. E. (2011). The evolution of the human head. Cambridge: Harvard University.

    Google Scholar 

  • Lieberman, D. E., McCarthy, R. C., Hiiemae, K. M., & Palmer, J. B. (2001). Ontogeny of postnatal hyoid and larynx descent in humans. Archive of Oral Biology, 46, 117–128.

    Article  CAS  Google Scholar 

  • Lieberman, P., Laitman, J. T., Reidenberg, J. S., & Gannon, P. J. (1992). The anatomy, physiology, acoustics and perception of speech: essential elements in analysis of the evolution of human speech. Journal of Human Evolution, 23, 447–467.

    Article  Google Scholar 

  • Mallegni, F., & Trinkaus, E. (1997). A reconsideration of the Archi 1 Neanderthal mandible. Journal of Human Evolution, 33, 651–668.

    Article  CAS  PubMed  Google Scholar 

  • Manning, F. A. (1977). Fetal breathing movements: As a reflection of fetal status. Postgraduate Medicine, 61, 116–122.

    Article  CAS  PubMed  Google Scholar 

  • Maureille, B. (2002). A lost Neanderthal neonate found. Nature, 419, 33–34.

    Article  CAS  PubMed  Google Scholar 

  • Miller, J. L., Sonies, B. C., & Macedonia, C. (2003). Emergence of oropharyngeal, laryngeal and swallowing activity in the developing fetal upper aerodigestive tract: An ultrasound evaluation. Early Human Development, 71, 61–87.

    Article  PubMed  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. L. (2007). The conceptual and statistical relationship between modularity and morphological integration. Systematic Biology, 56, 818–836.

    Article  PubMed  Google Scholar 

  • Mitteroecker, P., & Bookstein, F. L. (2008). The evolutionary role of modularity and integration in the hominoid cranium. Evolution, 62, 943–958.

    Article  PubMed  Google Scholar 

  • Mitteroecker, P., Gunz, P., Neubauer, S., & Müller, G. (2012). How to explore morphological integration in human evolution and development? Evolutionary Biology, 39, 536–553.

    Article  Google Scholar 

  • Moss, M. L. (1968). The primacy of functional matrices in orofacial growth. The Dental Practitioner and Dental Record, 19, 65–73.

    CAS  PubMed  Google Scholar 

  • Neubauer, S., Gunz, P., & Hublin, J.-J. (2009). The pattern of endocranial ontogenetic shape changes in humans. Journal of Anatomy, 215, 240–255.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ooé, T. (1956). On the development of position of the tooth germs in the human deciduous front teeth. Okajimas folia anatomica Japonica, 28, 317–340.

    Article  PubMed  Google Scholar 

  • Pampush, J. D., & Deagling, D. J. (2016a). The enduring puzzle of the human chin. Evolutionary Anthropology, 25, 20–35.

    Article  PubMed  Google Scholar 

  • Pampush, J. D., & Deagling, D. J. (2016b). Symphyseal surface strain during in vitro human mandibular wishboning. American Journal of Physical Anthrology, 159, 256–266.

    Article  Google Scholar 

  • Patrick, J., Fetherstone, W., Vick, H., & Voegelin, R. (1978a). Human fetal breathing movements and gross fetal body movement at weeks 34 to 35 of gestation. American Journal of Obstetrics and Gynecology, 130, 693–699.

    Article  CAS  PubMed  Google Scholar 

  • Patrick, J., Natale, R., & Richardson, B. (1978b). Pattern of human fetal breathing activity at 34 to 35 weeks’ gestational age. American Journal of Obstetrics and Gynecology, 132, 507–513.

    Article  CAS  PubMed  Google Scholar 

  • Pritchard, J. A. (1966). Fetal swallowing and amniotic fluid volume. Obstetrics and Gynecology, 28, 606–610.

    CAS  PubMed  Google Scholar 

  • R Development Core Team. (2008). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at http://www.r-project.org.

  • Radlanski, R. J., Renz, H., & Tabatabai, A. (2001). Prenatal development of the muscles in the floor of the mouth in human embryos and fetuses from 6.9 to 76 mm CRL. Annal of Anatomy, 183, 511–518.

    Article  CAS  Google Scholar 

  • Riesenfeld, A. (1969). The adaptive mandible: an experimental study. Acta Anatomica (Basel), 72, 246–262.

    Article  CAS  Google Scholar 

  • Rohlf, F. J., & Slice, D. E. (1990). Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 40–59.

    Article  Google Scholar 

  • Rosas, A. (1995). Seventeen new mandibular specimens from Atapuerca/Ibeas Middle Pleistocene hominids sample (1985–1992). Journal of Human Evolution, 28, 533–559.

    Article  Google Scholar 

  • Rosas, A., & Bastir, M. (2004). Geometric morphometric analysis of allometric variation in the mandibular morphology of hominids of Atapuerca, Sima de los Huesos site. Anatomical Record A, 278, 551–560.

    Article  Google Scholar 

  • Rubin, C., Judex, S., & Qin, Y. X. (2006). Low-level mechanical signals and their potential as a non-pharmacological intervention for osteoporosis. Age and Ageing, 35(S2), ii32–ii36.

    PubMed  Google Scholar 

  • Rubin, C., Turner, A. S., Mallinckrodt, C., Jerome, C., Mcleod, K. J., & Bain, S. (2002). Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone, 30, 445–452.

    Article  CAS  PubMed  Google Scholar 

  • Rubin, C. T., & Mcleod, K. J. (1990). Biologic modulation of mechanical influences in bone remodeling. In V. Mow & C. A. Ratcliff, & S. L.-Y. Woo (Eds.), Biomechanics of Diarthrodial Joints (pp. 97–118). New York: Springer.

    Chapter  Google Scholar 

  • Schwartz, J. H., & Tattersall, I. (2000). The human chin revisited: what is it and who has it? Journal of Human Evolution, 38, 367–409.

    Article  CAS  PubMed  Google Scholar 

  • Smith, F. H. (1984). Fossil hominids from the Upper Pleistocene of Central Europe and the origin of modern Europeans. In F. H. Smith & Spencer (Eds.), The origins of modern humans: A world survey of the fossil evidence (pp. 137–209). New York.

  • Solow, B., & Siersbæk-Nielsen, S. (1986). Growth changes in head posture related to craniofacial development. American Journal of Orthodontics, 89, 132–140.

    Article  CAS  PubMed  Google Scholar 

  • Spoor, C. F. (1997). Basicranial architecture and relative brain size of Sts 5 (Australopithecus africanus) and other Plio-Pleistocene hominids. South African journal of science, 93, 182–186.

    Google Scholar 

  • Spoor, F., Zonneveld, F., & Macho, G. A. (1993). Linear measurements of cortical bone and dental enamel by computed tomography: Applications and problems. American Journal of Physical Anthrology, 91, 469–484.

    Article  CAS  Google Scholar 

  • Strait, D. S. (2001). Integration, phylogeny, and the hominid cranial base. American Journal of Physical Anthropology, 114, 273–297.

    Article  CAS  PubMed  Google Scholar 

  • Stringer, C. B., Hublin, J.-J., & Vandermeersch, B. (1984). The origin of anatomically modern humans in western Europe. In F. H. Smith & Spencer (Eds.), The origins of modern humans: a world survey of the fossil evidence (pp. 51–135). New York.

  • Tillier, A.-M. (1979). La dentition de l’enfant moustérien Chateauneuf 2 découvert à l’abri de Hauteroche (Charente). L’Anthropologie, 83, 417–438.

    Google Scholar 

  • Toldt, C. (1906). Über die Kinnknöchelchen und ihre Bedeutung für die Kinnbildung beim Menschen. Mitteilungen der Anthropologischen Geselschaft in Wien, 36, 51–54.

    Google Scholar 

  • van Spronsen, P. H., Koolstra, J. H., van Ginkel, F. C., Weijs, W. A., Valk, J., & Prahl-Andersen, B. (1997). Relationships between the orientation and moment arms of the human jaw muscles and normal craniofacial morphology. European Journal of Orthodontics, 19, 313–328.

    Article  PubMed  Google Scholar 

  • Weindenreich, F. (1936). The mandibles of Sinanthropus Pekinensis: A comparative study. In V.K. Ting, T.C. Chow, A.W. Grabau, J.S. Lee, Y.C. Sun, C.C. Young &amp, T.H. Yin CC, Yin TH (Ed.) Palaeontologia sinica (Series D Volume 7 Fascicle 3). Peiping: Geological Survey of China.

    Google Scholar 

  • Wolpoff, M. H. (1980). Paleoanthropology. New York: Knopf Publishing Group.

    Google Scholar 

  • Wolpoff, M. H., Smith, F., Malez, M., Radovcic, J., & Rukavina, D. (1981). Upper Pleistocene hominid remains from Vindija Cave, Croatia, Yugoslavia. American Journal of Physical Anthropology, 54, 499–545.

    Article  Google Scholar 

  • Wong, M., & Carter, D. R. (1990). Theoretical stress analysis of organ culture osteogenesis. Bone, 11, 127–131.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Encarmación Fernández Valle and David Castejón Ferrer (Pluridisciplinary Institute, University Complutense of Madrid, Spain) for the MRI acquisitions. We also thank V. Dousset, C. Douws, C. Thibaut, and E. Gatuing (C.H.U. Pellegrin, Bordeaux) for access to their CT datasets. We are grateful to Markus Bastir, Antonio Rosas, and Fred Bookstein for thoughtful comments on earlier versions of this manuscript. Finally, the authors thank Benedikt Hallgrimsson, Rolian Campbell, and the two anonymous reviewers for their helpful comments on an earlier draft of this manuscript. This research has been supported by the Fondation Fyssen (Paris), Cátedra Dental Implants and Biomaterials SA, and Project A-189, and by the Austrian Science Fund (FWF P29397).

Author Contributions

MC and JCP-F designed research; MC, JCP-F, RR, JAM-G, AGD and PM performed research; MC and PM analyzed data; and MC, JCP-F, RR, AGD, JAM-G, and PM wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Coquerelle.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coquerelle, M., Prados-Frutos, J.C., Rojo, R. et al. The Fetal Origin of the Human Chin. Evol Biol 44, 295–311 (2017). https://doi.org/10.1007/s11692-017-9408-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-017-9408-9

Keywords

Navigation