Skip to main content
Log in

Sympatric Speciation in the Post “Modern Synthesis” Era of Evolutionary Biology

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Sympatric speciation is among the most controversial and challenging concepts in evolution. There are a multitude of definitions of speciation alone, and when combined with the biogeographic concept of sympatric range overlap, consensus on what sympatric speciation is, whether it happens, and its importance, is even more difficult to achieve. Providing the basis upon which to define and judge sympatric speciation, the Modern Evolutionary Synthesis (Huxley in Evolution: the modern synthesis. MIT Press, Cambridge, 1942) led to the conclusion that sympatric speciation is an inconsequential process in the generation of species diversity. In the post Modern Synthesis era of evolutionary biology, the PCR revolution and associated accumulation of DNA sequence data from natural populations has led to a resurgence of interest in sympatric speciation, and more importantly, the role of natural selection in lineage diversification. Much effort is currently being devoted to elucidating the processes by which the constituents of an initially panmictic population can become reproductively isolated and evolve some level of reproductive incompatibility without the complete cessation of gene flow due to geographic barriers. The evolution of reproductive isolation solely due to natural selection is perhaps the most controversial manner by which sympatric speciation occurs, and it is that which we focus upon in this review. Mathematical model simulations indicate that even strict definitions of sympatric speciation are possible to satisfy, empirical data consistent with sympatric divergence are accumulating, but irrefutable evidence of sympatric speciation in natural populations remains elusive. Genomic investigations are advancing our ability to identify genetic patterns caused by natural selection, thereby advancing our understanding of the power of natural selection relative to gene flow. Overall, sympatric lineage divergence, especially at the sub-species level, may have led to a substantial portion of biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adachi-Hagimori, T., Miura, K., & Abe, Y. (2011). Gene flow between sexual and asexual strains of parasitic wasps: A possible case of sympatric speciation caused by a parthenogenesis-inducing bacterium. Journal of Evolutionary Biology, 24, 1254–1262.

    PubMed  Google Scholar 

  • Allendorf, F. W., Hohenlohe, P. A., & Luikart, G. (2010). Genomics and the future of conservation genetics. Nature Reviews Genetics, 11, 697–709.

    PubMed  CAS  Google Scholar 

  • Altshuler, D. L., Durbin, R. M., Abecasis, G. R., Bentley, D. R., Chakravarti, A., 1000 Genomes Project Consortium, et al. (2010). A map of human genome variation from population-scale sequencing. Nature, 467, 1061–1073.

    Google Scholar 

  • Avise, J. C., & Wollenberg, K. (1997). Phylogenetics and the origin of species. Procedings of the National Academy of Sciences, USA, 94, 7748–7755.

    CAS  Google Scholar 

  • Babik, W., Butlin, R. K., Baker, W. J., Papadopulos, A. S. T., Boulesteix, M., Anstett, M., et al. (2009). How sympatric is speciation in the Howea palms of Lord Howe Island? Molecular Ecology, 18, 3629–3638.

    PubMed  Google Scholar 

  • Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE, 3, e3376. doi:10.1371/journal.pone.0003376.

    PubMed  Google Scholar 

  • Barbazuk, W. B., Emrich, S. J., Chen, H. D., Li, L., & Schnable, P. S. (2007). SNP discovery via 454 transcriptome sequencing. The Plant Journal, 51, 910–918.

    PubMed  CAS  Google Scholar 

  • Barluenga, M., & Meyer, A. (2010). Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp.) in the Nicaraguan crater lakes. BMC Evolutionary Biology, 10, 326.

    PubMed  Google Scholar 

  • Barluenga, M., Stolting, K. N., Salzburger, W., Muschick, M., & Meyer, A. (2006). Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature, 439, 719–723.

    PubMed  CAS  Google Scholar 

  • Barraclough, T. G., & Vogler, A. P. (2000). Detecting the geographical pattern of speciation from species-level phylogenies. American Naturalist, 155, 419–433.

    PubMed  Google Scholar 

  • Barton, N. H. (2010). What role does natural selection play in speciation? Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 1825–1840.

    CAS  Google Scholar 

  • Beaumont, M. A. (2008). Joint determination of topology, divergence time and immigration in population trees. In S. Matsumura, P. Forster, & C. Renfrew (Eds.), Simulations, genetics and human prehistory (pp. 135–154). Cambridge: McDonald Institute for Archaeological Research.

    Google Scholar 

  • Beaumont, M. A., Zhang, W., & Balding, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics, 162, 2025–2035.

    PubMed  Google Scholar 

  • Bertorelle, G., Benazzo, A., & Mona, S. (2010). ABC as a flexible framework to estimate demography over space and time: Some cons, many pros. Molecular Ecology, 19, 2609–2625.

    PubMed  CAS  Google Scholar 

  • Bird, C. E. (2011). Morphological and behavioral evidence for adaptive diversification of sympatric Hawaiian limpets. Journal of Integrative and Comparative Biology, 51, 466–473.

    Google Scholar 

  • Bird, C. E., Holland, B. S., Bowen, B. W., & Toonen, R. J. (2007). Contrasting phylogeography in three endemic Hawaiian limpets (Cellana spp.) with similar life histories. Molecular Ecology, 16, 3173–3186.

    PubMed  CAS  Google Scholar 

  • Bird, C. E., Holland, B. S., Bowen, B. W., & Toonen, R. J. (2011a). Diversification of sympatric broadcast-spawning limpets (Cellana spp.) within the Hawaiian archipelago. Molecular Ecology, 20, 2128–2141.

    PubMed  Google Scholar 

  • Bird, C. E., Smouse, P. E., Karl, S. A., & Toonen, R. J. (2011b). Detecting and measuring genetic differentiation. In S. Koenemann, C. Schubart, & C. Held (Eds.), Crustacean issues: Phylogeography and population genetics in crustacea (pp. 31–73). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Bolnick, D. I. (2004). Waiting for sympatric speciation. Evolution, 58, 895–899.

    PubMed  Google Scholar 

  • Bolnick, D. I. (2011). Sympatric speciation in threespine stickleback: Why not? International Journal of Ecology. doi:10.1155/2011/942847.

    Google Scholar 

  • Bolnick, D. I., & Doebeli, M. (2003). Sexual dimorphism and adaptive speciation: Two sides of the same ecological coin. Evolution, 57, 2433–2449.

    PubMed  Google Scholar 

  • Bolnick, D. I., & Fitzpatrick, B. M. (2007). Sympatric speciation: Models and empirical evidence. Annual Review of Ecology Evolution and Systematics, 38, 459–487.

    Google Scholar 

  • Briggs, J. C. (2007). Marine longitudinal biodiversity: Causes and conservation. Diversity and Distributions, 13, 544–555.

    Google Scholar 

  • Butlin, R. K., Galindo, J., & Grahame, J. W. (2008). Sympatric, parapatric or allopatric: The most important way to classify speciation? Philosophical Transactions of the Royal Society B-Biological Sciences, 363, 2997–3007.

    Google Scholar 

  • Chan, Y. L., Anderson, C. N. K., & Hadly, E. A. (2006). Bayesian estimation of the timing and severity of a population bottleneck from ancient DNA. PLoS Genetics, 2, e59. doi:10.1371/journal.pgen.0020059.

    PubMed  Google Scholar 

  • Coyne, J. A. (2007). Sympatric speciation. Current Biology, 17, R787–R788.

    PubMed  CAS  Google Scholar 

  • Coyne, J. A. (2011). Speciation in a small space. Proceedings of the National Academy of Sciences USA, 108, 12975–12976.

    CAS  Google Scholar 

  • Coyne, J. A., & Orr, H. A. (1989). Two rules of speciation. In D. Otte & J. A. Endler (Eds.), Speciation and its consequences (pp. 180–207). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Coyne, J. A., & Price, T. D. (2000). Little evidence for sympatric speciation in island birds. Evolution, 54, 2166–2171.

    PubMed  CAS  Google Scholar 

  • Crow, K. D., Munehara, H., & Bernardi, G. (2010). Sympatric speciation in a genus of marine reef fishes. Molecular Ecology, 19, 2089–2105.

    PubMed  CAS  Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection or the preservation of favored races in the struggle for life. London: J. Murray.

    Google Scholar 

  • de Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. In D. J. Howard & S. H. Berlocher (Eds.), Endless forms: Species and speciation (pp. 57–75). New York: Oxford University Press.

    Google Scholar 

  • de Queiroz, K. (1999). The general lineage concept of species and the defining properties of the species category. In R. A. Wilson (Ed.), Species: New interdisciplinary essays (pp. 49–89). Cambridge, MA: MIT Press.

    Google Scholar 

  • de Queiroz, K. (2005). A unified concept of species and its consequences for the future of taxonomy. Proceedings of the California Academy of Sciences, 56, 196–215.

    Google Scholar 

  • de Queiroz, K. (2007). Species concepts and delimitation. Systematic Biology, 56, 879–886.

    PubMed  Google Scholar 

  • Dieckmann, U., & Doebeli, M. (1999). On the origin of species by sympatric speciation. Nature, 400, 354–357.

    PubMed  CAS  Google Scholar 

  • Dieckmann, U., & Doebeli, M. (2005). Pluralism in evolutionary theory. Journal of Evolutionary Biology, 18, 1209–1213.

    PubMed  CAS  Google Scholar 

  • Dobzhansky, T. (1937). Genetics and the origin of species. New York: Columbia University Press.

    Google Scholar 

  • Dobzhansky, T. (1950). Mendelian populations and their evolution. American Naturalist, 84, 401–418.

    Google Scholar 

  • Ellegren, H. (2008). Sequencing goes 454 and takes large-scale genomics into the wild. Molecular Ecology, 17, 1629–1631.

    PubMed  CAS  Google Scholar 

  • Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.

    PubMed  CAS  Google Scholar 

  • Feder, J. L. (1998). The apple maggot fly, Rhagoletis pomonella: flies in the face of conventional wisdom about speciation? In D. Howard & S. H. Berlocher (Eds.), Endless forms: Species and speciation (pp. 130–144). London: Oxford University Press.

    Google Scholar 

  • Feder, J. L., Berlocher, S. H., Roethele, J. B., Dambroski, H., Smith, J. J., Perry, W. L., et al. (2003). Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proceedings of the National Academy of Sciences, USA, 100, 10314–10319.

    CAS  Google Scholar 

  • Feder, J. L., Gejii, R., Powell, T. H. Q., & Nosil, P. (2011). Adaptive chromosomal divergence driven by mixed geographic mode of evolution. Evolution, 65, 2157–2170.

    PubMed  Google Scholar 

  • Feder, J. L., & Nosil, P. (2010). The efficacy of divergence hitchhiking in generating genomic islands during ecological speciation. Evolution, 64, 1729–1747.

    PubMed  Google Scholar 

  • Felsenstein, J. (1981). Skepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution, 35, 124–138.

    Google Scholar 

  • Fitzpatrick, B. M., Fordyce, J. A., & Gavrilets, S. (2008). What, if anything, is sympatric speciation? Journal of Evolutionary Biology, 21, 1452–1459.

    PubMed  CAS  Google Scholar 

  • Fitzpatrick, B. M., Fordyce, J. A., & Gavrilets, S. (2009). Pattern, process and geographic modes of speciation. Journal of Evolutionary Biology, 22, 2342–2347.

    PubMed  CAS  Google Scholar 

  • Fry, J. D. (2003). Detecting ecological trade-offs using selection experiments. Ecology, 84, 1672–1678.

    Google Scholar 

  • Gaggiotti, O. E. (2011). Making inferences about speciation using sophisticated statistical genetics methods: look before you leap. Molecular Ecology, 20, 2229–2232.

    PubMed  Google Scholar 

  • Gavrilets, S. (2004). Fitness landscapes and the origin of species. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Gavrilets, S. (2005). The Maynard Smith model of sympatric speciation. Journal of Theoretical Biology, 239, 172–182.

    PubMed  Google Scholar 

  • Gavrilets, S., & Vose, A. (2007). Case studies and mathematical models of ecological speciation. 2. Palms on an oceanic island. Molecular Ecology, 16, 2910–2921.

    PubMed  Google Scholar 

  • Gavrilets, S., Vose, A., Barluenga, M., Salzburger, W., & Meyer, A. (2007). Case studies and mathematical models of ecological speciation. 1. Cichlids in a crater lake. Molecular Ecology, 16, 2893–2909.

    PubMed  Google Scholar 

  • Getz, W. M., & Kaitala, V. (1989). Ecogenetic models, competition, and heteropatry. Theoretical Population Biology, 36, 34–58.

    Google Scholar 

  • Gourbiere, S., & Mallet, J. (2005). Has adaptive dynamics contributed to the understanding of adaptive and sympatric speciation? Journal of Evolutionary Biology, 18, 1201–1204.

    PubMed  CAS  Google Scholar 

  • Hamilton, G., Currat, M., Ray, N., Heckel, G., Beaumont, M., & Excoffier, L. (2005). Bayesian estimation of recent migration rates after a spatial expansion. Genetics, 170, 409–417.

    PubMed  CAS  Google Scholar 

  • Hammer, M. F., Woerner, A. E., Mendez, F. L., Watkins, J. C., & Wall, J. D. (2011). Genetic evidence for archaic admixture in Africa. Proceedings of the National Academy of Sciences, USA, 108, 15123–15128.

    CAS  Google Scholar 

  • Hart, M. W. (2010). The species concept as an emergent property of population biology. Evolution, 65, 613–616.

    PubMed  Google Scholar 

  • Hedrick, P. W. (2005). A standardized genetic differentiation measure. Evolution, 59, 1633–1638.

    PubMed  CAS  Google Scholar 

  • Hellberg, M. E. (1998). Sympatric sea shells along the sea’s shore: the geography of speciation in the marine gastropod Tegula. Evolution, 52, 1311–1324.

    Google Scholar 

  • Hendry, A. P., Vamosi, S. M., Latham, S. J., Heilbuth, J. C., & Day, T. (2000). Questioning species realities. Conservation Genetics, 1, 67–76.

    CAS  Google Scholar 

  • Hey, J. (2006). On the failure of modern species concepts. Trends in Ecology & Evolution, 21, 447–450.

    Google Scholar 

  • Hickerson, M. J., Carstens, B. C., Cavender-Bares, J., Crandall, K. A., Graham, J. B., Johnson, J. B., et al. (2010). Phylogeography’s past, present, and future: 10 years after Avise 2000. Molecular Phylogenetics and Evolution, 54, 291–301.

    PubMed  CAS  Google Scholar 

  • Hohenlohe, P. A., Bassham, S., Etter, P. D., Stiffler, N., Johnson, E. A., et al. (2010a). Population genomics of parallel adaptation in threespine stickleback using sequenced RAD Tags. PLoS Genetics, 6, e1000862. doi:10.1371/journal.pgen.1000862.

    PubMed  Google Scholar 

  • Hohenlohe, P. A., Phillips, P. C., & Cresko, W. A. (2010b). Using population genomics to detect selection in natural populations: key concepts and methodological considerations. International Journal of Plant Sciences, 171, 1059–1071.

    PubMed  CAS  Google Scholar 

  • Huxley, J. S. (1942). Evolution: The modern synthesis. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ilves, K., Huang, W., Wares, J. P., & Hickerson, M. J. (2010). Congruent histories of colonization and/or mitochondrial selective sweeps across the North Atlantic intertidal assemblage. Molecular Ecology, 19, 4505–4519.

    PubMed  Google Scholar 

  • Jaarola, M., Martin, R. H., & Ashley, T. (1998). Direct evidence for suppression of recombination within two pericentric inversions in humans: A new sperm-FISH technique. American Journal of Human Genetics, 63, 218–224.

    PubMed  CAS  Google Scholar 

  • Jiggins, C. D., Salazar, C., Linares, M., & Mavarez, J. (2008). Review. Hybrid trait speciation and Heliconius butterflies. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 3047–3054.

    Google Scholar 

  • Johannesson, K. (2009). Inverting the null-hypothesis of speciation: a marine snail perspective. Evolutionary Ecology, 23, 5–16.

    Google Scholar 

  • Johannesson, K. (2010). Are we analyzing speciation without prejudice? Annals of the New York Academy of Sciences, 1206, 143–149.

    PubMed  Google Scholar 

  • Johannesson, K., Panova, M., Kemppainen, P., Andre, C., Rolan-Alvarez, E., & Butlin, R. K. (2010). Repeated evolution of reproductive isolation in a marine snail: unveiling mechanisms of speciation. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 1735–1747.

    Google Scholar 

  • Johannesson, K., Rolan-Alvarez, E., & Ekendahl, A. (1995). Incipient reproductive isolation between two sympatric morphs of the intertidal snail Littorina saxatilis. Evolution, 49, 1180–1190.

    Google Scholar 

  • Jost, L. (2008). GST and its relatives do not measure differentiation. Molecular Ecology, 17, 4015–4026.

    PubMed  Google Scholar 

  • Kelly, R. P., & Eernisse, D. J. (2008). Reconstructing a radiation: the chiton genus Mopalia in the north Pacific. Invertebrate Systematics, 22, 1–12.

    Google Scholar 

  • Kingman, J. F. C. (2000). Origins of the Coalescent: 1974–1982. Genetics, 156, 1461–1463.

    PubMed  CAS  Google Scholar 

  • Kirkpatrick, M., & Ravigné, V. (2002). Speciation by natural and sexual selection: Models and experiments. American Naturalist, 159, S22–S35.

    PubMed  Google Scholar 

  • Kisel, Y., & Barraclough, T. G. (2010). Speciation has a spatial scale that depends on levels of gene flow. American Naturalist, 175, 316–334.

    PubMed  Google Scholar 

  • Krug, P. J. (2011). Patterns of speciation in marine gastropods: A review of the phylogenetic evidence for localized radiations in the sea. American Malacological Bulletin, 29, 169–186.

    Google Scholar 

  • Levene, H. (1953). Genetic equilibrium when more than one ecological niche is available. American Naturalist, 87, 331–333.

    Google Scholar 

  • Levin, D. A. (2009). Flowering-time plasticity facilitates niche shifts in adjacent populations. The New Phytologist, 183, 661–666.

    PubMed  Google Scholar 

  • Losos, J. B., & Schluter, D. (2000). Analysis of an evolutionary species-area relationship. Nature, 408, 847–850.

    PubMed  CAS  Google Scholar 

  • Love, A. C. (2009). Marine invertebrates, model organisms, and the modern synthesis: Epistemic values, evo-devo, and exclusion. Theory in Biosciences, 128, 19–42.

    PubMed  Google Scholar 

  • Mallet, J., Meyer, A., Nosil, P., & Feder, J. L. (2009). Space, sympatry and speciation. Journal of Evolutionary Biology, 22, 2332–2341.

    PubMed  CAS  Google Scholar 

  • Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, 9, 387–402.

    PubMed  CAS  Google Scholar 

  • Marie Curie SPECIATION Network. (2011). What do we need to know about speciation? Trends in Ecology and Evolution, 27, 27–39.

    Google Scholar 

  • Masly, J. P., & Presgraves, D. C. (2007). High-resolution genome-wide dissection of the two rules of speciation in Drosophila. PLoS Biology, 5, e243. doi:10.1371/journal.pbio.0050243.

    PubMed  Google Scholar 

  • Mayden, R. L. (1997). A hierarchy of species concepts: The denouement in the saga of the species problem. In M. F. Claridge, H. A. Dawah, & M. R. Wilson (Eds.), Species: The units of biodiversity (pp. 381–424). London: Chapman and Hall.

    Google Scholar 

  • Mayden, R. L. (1999). Consilience and a hierarchy of species concepts: Advances toward closure on the species puzzle. Journal of Nematology, 31, 95–116.

    PubMed  CAS  Google Scholar 

  • Maynard Smith, J. (1966). Sympatric speciation. American Naturalist, 100, 637–650.

    Google Scholar 

  • Mayr, E. (1942). Systematics and the origin of species. New York: Columbia University Press.

    Google Scholar 

  • Mayr, E. (1954a). Geographic speciation in tropical echinoids. Evolution, 8, 1–18.

    Google Scholar 

  • Mayr, E. (1954b). Change of genetic environment and evolution. In J. Huxley, A. C. Hardy, & E. B. Ford (Eds.), Evolution as a process (pp. 157–180). London: Unwin Brothers.

    Google Scholar 

  • Mayr, E. (1963). Animal species and evolution. Cambridge, MA: Belknap Press of Harvard University Press.

    Google Scholar 

  • Mayr, E. (2001). Wu’s genic view of speciation. Journal of Evolutionary Biology, 14, 866–867.

    Google Scholar 

  • Meirmans, P. G. (2006). Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution, 60, 2399–2402.

    PubMed  Google Scholar 

  • Mendel, G. (1866). Versuche über Pflanzen-Hybriden. Verh. Naturforsch. Ver. Brünn, 4, 3–47 (in English in 1901, Journal of the Royal Horticulture Society, 26, 1–32).

  • Merrill, R. M., Gompert, Z., Dembeck, L. M., Kronforst, M. R., McMillan, W. O., & Jiggins, C. D. (2011). Mate preference across the speciation continuum in a clade of mimetic butterflies. Evolution, 65, 1489–1500.

    PubMed  Google Scholar 

  • Messina, F. J., & Jones, J. C. (2011). Inheritance of traits mediating a major host shift by a seed beetle, Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). Annals of the Entomological Society of America, 104, 808–815.

    Google Scholar 

  • Messina, F. J., Mendenhall, M., & Jones, J. C. (2009). An experimentally induced host shift in a seed beetle. Entomologia Experimentalis et Applicata, 132, 39–49.

    Google Scholar 

  • Michel, A. P., Sim, S., Powell, T. H. Q., Taylor, M. S., Nosil, P., & Feder, J. L. (2010). Widespread genomic divergence during sympatric speciation. Proceedings of the Natural Academy of Science, USA, 107, 9724–9729.

    CAS  Google Scholar 

  • Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Research, 17, 240–248.

    PubMed  CAS  Google Scholar 

  • Muller, H. J. (1942). Isolation mechanisms, evolution and temperature. Biological Symposia, 6, 71–125.

    Google Scholar 

  • Mullis, K. (1990). The unusual origin of the polymerase chain reaction. Scientific American, 262, 56–65.

    PubMed  CAS  Google Scholar 

  • Munday, P. L., Van Herwerden, L., & Dudgeon, C. L. (2004). Evidence for sympatric speciation by host shift in the sea. Current Biology, 14, 1498–1504.

    PubMed  CAS  Google Scholar 

  • Nadeau, N. J., & Jiggins, C. D. (2010). A golden age for evolutionary genetics? Genomic studies of adaptation in natural populations. Trends in Genetics, 26, 484–492.

    PubMed  CAS  Google Scholar 

  • Naomi, S.-I. (2011). On the integrated frameworks of species concepts: Mayden’s hierarchy of species concepts and de Queiroz’s unified concept of species. Journal of Zoological Systematics and Evolutionary Research, 49, 177–184.

    Google Scholar 

  • Niemiller, M. L., Fitzpatrick, B. M., & Miller, B. T. (2008). Recent divergence with gene flow in Tennessee cave salamanders (Plethodontidae: Gyrinophilus) inferred from gene genealogies. Molecular Ecology, 17, 2258–2275.

    PubMed  CAS  Google Scholar 

  • Noor, M. A. F., Grams, K. L., Bertucci, L. A., & Reiland, J. (2001). Chromosomal inversions and the persistence of species. Proceedings of the Natural Academy of Science, USA, 98, 12084–12088.

    CAS  Google Scholar 

  • Nosil, P., & Feder, J. L. (2012). Genomic divergence during speciation: causes and consequences. Philosophical Transactions of the Royal Society B-Biological Sciences, 367, 332–342.

    Google Scholar 

  • Nosil, P., Funk, D. J., & Ortíz-Barrientos, D. (2009a). Divergent selection and heterogeneous genomic divergence. Molecular Ecology, 18, 375–402.

    PubMed  Google Scholar 

  • Nosil, P., Harmon, L. J., & Seehausen, O. (2009b). Ecological explanations for (incomplete) speciation. Trends in Ecology & Evolution, 24, 145–156.

    Google Scholar 

  • O’Malley, K. G., Camara, M. D., & Banks, M. A. (2007). Candidate loci reveal genetic differentiation between temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha). Molecular Ecology, 16, 4930–4941.

    PubMed  Google Scholar 

  • Orr, H. A. (1996). Dobzhansky, Bateson, and the genetics of speciation. Genetics, 144, 1331–1335.

    PubMed  CAS  Google Scholar 

  • Otto, S. P., & Whitton, J. (2000). Polyploid incidence and evolution. Annual Review of Genetics, 34, 401–437.

    PubMed  CAS  Google Scholar 

  • Papadopulos, A. S. T., Baker, W. J., Crayn, D., Butlin, R. K., Kynast, R. G., Hutton, I., et al. (2011). Speciation with gene flow on Lord Howe Island. Proceedings of the National Academy of Sciences, USA, 108, 13188–13193.

    CAS  Google Scholar 

  • Patterson, N., Richter, D. J., Gnerre, S., Lander, E., & Reich, D. (2006). Genetic evidence for complex speciation of humans and chimpanzees. Nature, 441, 1103–1108.

    PubMed  CAS  Google Scholar 

  • Patterson, N., Richter, D. J., Gnerre, S., Lander, E., & Reich, D. (2008). Reply: Complex speciation of humans and chimpanzees. Nature, 452, E4.

    CAS  Google Scholar 

  • Pinho, C., & Hey, J. (2010). Divergence with gene flow: Models and data. Annual Review of Ecology Evolution and Systematics, 41, 215–230.

    Google Scholar 

  • Poulton, E. B. (1904). What is a species? (Presidential address to the Entomological Society of London) Proceedings of the Entomological Society London (revised version in Poulton E. B. Essays on Evolution. 1889–1907. (1908) Clarendon Press, Oxford. pp. 46–94).

  • Presgraves, D. C., & Yi, S. V. (2009). Doubts about complex speciation between humans and chimpanzees. Trends in Ecology & Evolution, 24, 533–540.

    Google Scholar 

  • Ribeiro, F., & Caticha, N. (2009). Emergence and loss of assortative mating in sympatric speciation. Journal of Theoretical Biology, 258, 465–477.

    PubMed  Google Scholar 

  • Rocha, L. A., & Bowen, B. W. (2008). Speciation in coral reef fishes. Journal of Fish Biology, 72, 1101–1121.

    Google Scholar 

  • Rocha, L. A., Robertson, D. R., Roman, J., & Bowen, B. W. (2005). Ecological speciation in tropical reef fishes. Proceedings of the Royal Society of London. Series B, 272, 573–579.

    PubMed  Google Scholar 

  • Rosenblum, E. B., & Harmon, L. J. (2011). “Same same but different”: Replicated ecological speciation at White Sands. Evolution, 65, 946–960.

    PubMed  Google Scholar 

  • Rundle, H. D., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8, 336–352.

    Google Scholar 

  • Sadedin, S., Hollander, J., Panova, M., Johannesson, K., & Gavrilets, S. (2009). Case studies and mathematical models of ecological speciation. 3: Ecotype formation in a Swedish snail. Molecular Ecology, 18, 4006–4023.

    PubMed  CAS  Google Scholar 

  • Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA, 74, 5463–5467.

    CAS  Google Scholar 

  • Savolainen, V., Anstett, M. C., Lexer, C., et al. (2006). Sympatric speciation in palms on an oceanic island. Nature, 441, 210–213.

    PubMed  CAS  Google Scholar 

  • Schliewen, U. K., Tautz, D., & Paabo, S. (1994). Sympatric speciation suggested by monophyly of crater lake cichlids. Nature, 368, 629–632.

    PubMed  CAS  Google Scholar 

  • Schluter, D. (2000). The ecology of adaptive radiation. New York: Oxford University Press Inc.

    Google Scholar 

  • Schluter, D. (2001). Ecology and the origin of species. Trends in Ecology & Evolution, 16, 372–380.

    Google Scholar 

  • Schluter, D. (2009). Evidence for ecological speciation and its alternative. Science, 323, 737–741.

    PubMed  CAS  Google Scholar 

  • Seehausen, O. (1997). Distribution of and reproductive isolation among color morphs of a rock-dwelling Lake Victoria cichlid (Haplochromis nyererei). Ecology of Freshwater Fish, 6, 59–66.

    Google Scholar 

  • Servedio, M. R., Van Doorn, G. S., Kopp, M., Frame, A. M., & Nosil, P. (2011). Magic traits in speciation: ‘Magic’ but not rare? Trends in Ecology & Evolution, 26, 389–397.

    Google Scholar 

  • Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press.

    Google Scholar 

  • Simpson, G. G. (1951). The species concept. Evolution, 5, 285–298.

    Google Scholar 

  • Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science, 236, 787–792.

    PubMed  CAS  Google Scholar 

  • Smadja, C. M., & Butlin, R. K. (2011). A framework for comparing processes of speciation in the presence of gene flow. Molecular Ecology, 20, 5123–5140.

    PubMed  Google Scholar 

  • Sobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64, 295–315.

    PubMed  Google Scholar 

  • Sousa, V. C., Fritz, M., Beaumont, M. A., & Chikhi, L. (2009). Approximate Bayesian computation without summary statistics: The case of admixture. Genetics, 181, 1507–1519.

    PubMed  CAS  Google Scholar 

  • Sousa, V. C., Grelaud, A., & Hey, J. (2011). On the nonidentifiability of migration time estimates in isolation with migration models. Molecular Ecology, 20, 3956–3962.

    PubMed  Google Scholar 

  • Stam, P. (1983). The evolution of reproductive isolation in closely adjacent populations through differential flowering time. Heredity, 50, 105–118.

    Google Scholar 

  • Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.

    PubMed  CAS  Google Scholar 

  • Strasburg, J. L., & Rieseberg, L. H. (2011). Interpreting the estimated timing of migration events between hybridizing species. Molecular Ecology, 20, 2353–2366.

    PubMed  Google Scholar 

  • Stuessy, T. F. (2006). Sympatric plant speciation in islands? Nature, 443, E12.

    PubMed  CAS  Google Scholar 

  • Templeton, A. R. (2008). The reality and importance of founder speciation in evolution. BioEssays, 30, 470–479.

    PubMed  Google Scholar 

  • Thibert-Plante, X., & Hendry, A. P. (2011). The consequences of phenotypic plasticity for ecological speciation. Journal of Evolutionary Biology, 24, 326–342.

    PubMed  CAS  Google Scholar 

  • Tomaiuolo, M., Hansen, T. F., & Levitan, D. R. (2007). A theoretical investigation of sympatric evolution of temporal reproductive isolation as illustrated by marine broadcast spawners. Evolution, 61, 2584–2595.

    PubMed  Google Scholar 

  • Tucker, P. K., Sage, R. D., Wilson, A. C., & Eichler, E. M. (1992). Abrupt cline for sex chromosomes in a hybrid zone between two species of mice. Evolution, 46, 1146–1163.

    Google Scholar 

  • Turelli, M., Barton, N. H., & Coyne, J. A. (2001). Theory and speciation. Trends in Ecology & Evolution, 16, 330–342.

    Google Scholar 

  • Turner, T. L., Hahn, M. W., & Nuzhdin, S. V. (2005). Genomic islands of speciation in Anopheles gambiae. PLoS Biology, 3, e285. doi:10.1371/journal.pbio.0030285.

    PubMed  Google Scholar 

  • Via, S. (2001). Sympatric speciation in animals: The ugly duckling grows up. Trends in Ecology and Evolution, 16, 381–390.

    PubMed  Google Scholar 

  • Via, S. (2009). Natural selection in action during speciation. Proceedings of the National Academy of Sciences, USA, 106, 9939–9946.

    CAS  Google Scholar 

  • Via, S., & West, J. A. (2008). The genetic mosaic suggests a new role for hitchhiking in ecological speciation. Molecular Ecology, 17, 4334–4345.

    PubMed  Google Scholar 

  • Wakeley, J. (2008). Response: Complex speciation of humans and chimpanzees. Nature, 452, E3–E4.

    PubMed  CAS  Google Scholar 

  • Wang, Y., & Hey, J. (2010). Estimating divergence parameters with small samples from a large number of loci. Genetics, 184, 363–379.

    PubMed  CAS  Google Scholar 

  • Waxman, D., & Gavrilets, S. (2005a). 20 Questions on adaptive dynamics: a target review. Journal of Evolutionary Biology, 18, 1139–1154.

    PubMed  CAS  Google Scholar 

  • Waxman, D., & Gavrilets, S. (2005b). Issues of terminology, gradient dynamics and the ease of sympatric speciation in adaptive dynamics. Journal of Evolutionary Biology, 18, 1214–1219.

    PubMed  CAS  Google Scholar 

  • Weersing, K., & Toonen, R. J. (2010). Population genetics, larval dispersal, and connectivity in marine systems. Marine Ecology Progress Series, 393, 1–12.

    Google Scholar 

  • Wiley, E. O. (1978). The evolutionary species concept reconsidered. Systematic Zoology, 27, 17–26.

    Google Scholar 

  • Wiley, E. O., & Mayden, R. L. (2000a). The evolutionary species concept. In Q. D. Wheeler & R. Meiner (Eds.), Species concept and phylogenetic theory: A debate (pp. 70–89). New York: Columbia University Press.

    Google Scholar 

  • Wiley, E. O., & Mayden, R. L. (2000b). A critique from the evolutionary species concept perspective. In Q. D. Wheeler & R. Meiner (Eds.), Species concept and phylogenetic theory: A debate (pp. 146–158). New York: Columbia University Press.

    Google Scholar 

  • Wiley, E. O., & Mayden, R. L. (2000c). A defense of the evolutionary species concept. In Q. D. Wheeler & R. Meiner (Eds.), Species concept and phylogenetic theory: A debate (pp. 198–208). New York: Columbia University Press.

    Google Scholar 

  • Wood, T. E., Takebayashi, N., Barker, M. S., Mayrose, I., Greenspoon, P. B., & Rieseberg, L. H. (2009). The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences USA, 106, 13875–13879.

    CAS  Google Scholar 

  • Wright, S. (1940). The statistical consequences of Mendelian heredity in relation to speciation. In J. Huxley (Ed.), The new systematics (pp. 161–183). London: Oxford University Press.

    Google Scholar 

  • Wright, S. (1943). Isolation by distance. Genetics, 28, 114–138.

    PubMed  CAS  Google Scholar 

  • Yatabe, Y., Kane, N. C., Scotti-Saintagne, C., & Rieseberg, L. H. (2007). Rampant gene exchange across a strong reproductive barrier between the annual sunflowers, Helianthus annuus and H. petiolaris. Genetics, 175, 1883–1893.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

For intellectual discussions that motivated and significantly improved this manuscript, we would like to thank Stephen Karl, Brian Bowen, Richard Grosberg, Luiz Rocha, Matthew Craig, Jonathan Whitney, Maria Pia Miglietta, Anuschka Faucci, Francesco Santini, Giacomo Bernardi, Michael Hart, Bernard Crespi, Stephen Palumbi, John Geller, Steven Morgan, Rosemary Gillespi, George Roderick, Nina Yasuda, Gustav Paulay, Christopher Meyer, Harilaos Lessios, the SICB marine speciation group, and audiences at U. C. Davis, U. C. Berkeley, U. C. Santa Cruz, U. C. Davis’ Bodega Bay Marine Laboratory, Cal. State’s Moss Landing Marine Laboratory, Stanford’s Hopkins Marine Laboratory, Simon Frasier University, University of Connecticut, Texas A&M University-Corpus Christi, Florida International University, and the University of Hawai’i. We also thank the efforts of two anonymous reviewers that helped to substantially improved this manuscript. CEB was funded by a grant from the Seaver Institute, the Hawai’i Sea Grant College Program, and the Papahanaumokuakea Marine National Monument. This is publication number 1491 from the Hawai’i Institute of Marine Biology, 8604 from the School of Ocean, Earth Sciences and Technology at the University of Hawai’i, and XXXX from the Marine Biology Program at Texas A&M University-Corpus Christi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher E. Bird.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bird, C.E., Fernandez-Silva, I., Skillings, D.J. et al. Sympatric Speciation in the Post “Modern Synthesis” Era of Evolutionary Biology. Evol Biol 39, 158–180 (2012). https://doi.org/10.1007/s11692-012-9183-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9183-6

Keywords

Navigation