Obésité

, Volume 12, Issue 4, pp 277–290 | Cite as

Les obésités monogéniques chez l’enfant

Article De Synthèse/Review Article
  • 19 Downloads

Résumé

L’augmentation de la prévalence de l’obésité infantile résulte de bouleversements environnementaux récents, mais ce risque est également lié à une forte composante génétique, propre à chaque individu. L’exploration des bases génétiques de l’obésité a permis l’identification de plusieurs gènes impliqués dans les formes monogéniques d’obésité. Cette revue résume l’état des connaissances dans ce domaine, souligne l’importance de la stratégie de diagnostic de l’obésité précoce et discute des nouveaux axes thérapeutiques pour améliorer la prise en charge des formes d’obésité précoce et sévère.

Mots clés

Obésité précoce Hyperphagie Monogénique Voie leptine–mélanocortine Test génétique 

Monogenic Forms of Childhood Obesity

Abstract

The global increase in the prevalence of childhood obesity is attributed to major recent changes in the environment, although obesity risk is intrinsically associated with individual genetic variations. The investigation of the genetic basis of obesity allowed the identification of several genes associated with monogenic childhood obesity. This review summarises the state-of-the-art technology in this field, recapitulates a strategy for clinical genetic testing and the new emerging drugs for a better management of earlyonset severe forms of obesity.

Keywords

Early-onset obesity Hyperphagia Monogenic Leptin–Melanocortin pathway Genetic testing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Han JC, Lawlor DA, Kimm SY (2010) Childhood obesity. Lancet 375:1737–48CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Patro B, Liber A, Zalewski B, et al (2013) Maternal and paternal body mass index and offspring obesity: a systematic review. Ann Nutr Metab 63:32–41CrossRefPubMedGoogle Scholar
  3. 3.
    Wardle J, Carnell S, Haworth CM, et al (2008) Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr 87:398–404PubMedGoogle Scholar
  4. 4.
    Kaur Y, de Souza RJ, Gibson WT, et al (2017) A systematic review of genetic syndromes with obesity. Obes Rev 18:603–34CrossRefPubMedGoogle Scholar
  5. 5.
    Cummings DE, Schwartz MW (2003) Genetics and pathophysiology of human obesity. Annu Rev Med 54:453–71CrossRefPubMedGoogle Scholar
  6. 6.
    Montague CT, Farooqi IS, Whitehead JP, et al (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387:903–7CrossRefPubMedGoogle Scholar
  7. 7.
    Yazdi FT, Clee SM, Meyre D (2015) Obesity genetics in mouse and human: back and forth, and back again. Peer J 3:e856CrossRefGoogle Scholar
  8. 8.
    Pigeyre M, Yazdi FT, Kaur Y, et al (2016) Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond) 130:943–86CrossRefGoogle Scholar
  9. 9.
    Gibson WT, Farooqi IS, Moreau M, et al (2004) Congenital leptin deficiency due to homozygosity for the Delta133G mutation: report of another case and evaluation of response to four years of leptin therapy. J Clin Endocrinol Metab 89:4821–6CrossRefPubMedGoogle Scholar
  10. 10.
    Fatima W, Shahid A, Imran M, et al (2011) Leptin deficiency and leptin gene mutations in obese children from Pakistan. Int J Pediatr Obes 6:419–27CrossRefPubMedGoogle Scholar
  11. 11.
    Saeed S, Bonnefond A, Manzoor J, et al (2014) Novel LEPR mutations in obese Pakistani children identified by PCR-based enrichment and next generation sequencing. Obesity 22:1112–7CrossRefPubMedGoogle Scholar
  12. 12.
    Saeed S, Bonnefond A, Manzoor J, et al (2015) Genetic variants in LEP, LEPR, and MC4R explain 30% of severe obesity in children from a consanguineous population. Obesity (Silver Spring) 23:1687–95CrossRefGoogle Scholar
  13. 13.
    Thakur S, Kumar A, Dubey S, et al (2014) A novel mutation of the leptin gene in an Indian patient. Clin Genet 86:391–3CrossRefPubMedGoogle Scholar
  14. 14.
    Strobel A, Issad T, Camoin L, et al (1998) A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 18:213–5CrossRefPubMedGoogle Scholar
  15. 15.
    Mazen I, El-Gammal M, Abdel-Hamid M, et al (2009) A novel homozygous missense mutation of the leptin gene (N103K) in an obese Egyptian patient. Mol Genet Metab 97:305–8CrossRefPubMedGoogle Scholar
  16. 16.
    Fischer-Posovszky P, von Schnurbein J, Moepps B, et al (2010) A new missense mutation in the leptin gene causes mild obesity and hypogonadism without affecting T cell responsiveness. J Clin Endocrinol Metab 95:2836–40CrossRefPubMedGoogle Scholar
  17. 17.
    Wabitsch M, Funcke JB, Lennerz B, et al (2015) Biologically inactive leptin and early-onset extreme obesity. N Engl J Med 372:48–54CrossRefPubMedGoogle Scholar
  18. 18.
    Wabitsch M, Funcke JB, von Schnurbein J, et al (2015) Severe early-onset obesity due to bio-inactive leptin caused by a p.N103K mutation in the leptin gene. J Clin Endocrinol Metab 100:3227–30CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shabana, Hasnain S (2016) The p.N103K mutation of leptin (LEP) gene and severe early onset obesity in Pakistan. Biol Res 49:23CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Clément K, Vaisse C, Lahlou N, et al (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392:398–401CrossRefPubMedGoogle Scholar
  21. 21.
    Farooqi IS, Wangensteen T, Collins S, et al (2007) Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med 356:237–47CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Le Beyec J, Cugnet-Anceau C, Pepin D, et al (2013) Homozygous leptin receptor mutation due to uniparental disomy of chromosome 1: response to bariatric surgery. J Clin Endocrinol Metab 98:e397–E402CrossRefGoogle Scholar
  23. 23.
    Huvenne H, Le Beyec J, Pépin D, et al (2015) Seven novel deleterious LEPR mutations found in early-onset obesity: a ΔExon6–8 shared by subjects from Reunion Island, France, suggests a founder effect. J Clin Endocrinol Metab 100:e757–E66CrossRefGoogle Scholar
  24. 24.
    Vauthier V, Jaillard S, Journel H, et al (2012) Homozygous deletion of an 80 kb region comprising part of DNAJC6 and LEPR genes on chromosome 1P31.3 is associated with early onset obesity, mental retardation and epilepsy. Mol Genet Metab 106:345–50CrossRefPubMedGoogle Scholar
  25. 25.
    Hannema SE, Wit JM, Houdijk ME, et al (2016) Novel leptin receptor mutations identified in two girls with severe obesity are associated with increased bone mineral density. Horm Res Paediatr 85:412–20CrossRefPubMedGoogle Scholar
  26. 26.
    Mazen I, El-Gammal M, Abdel-Hamid M, et al (2011) Homozygosity for a novel missense mutation in the leptin receptor gene (P316T) in two Egyptian cousins with severe early onset obesity. Mol Genet Metab 102:461–4CrossRefPubMedGoogle Scholar
  27. 27.
    Andiran N, Celik N, Andiran F (2011) Homozygosity for two missense mutations in the leptin receptor gene (P316:W646C) in a Turkmenian girl with severe early-onset obesity. J Pediatr Endocrinol Metab 24:1043–5CrossRefPubMedGoogle Scholar
  28. 28.
    Simonds SE, Pryor JT, Ravussin E, et al (2014) Leptin mediates the increase in blood pressure associated with obesity. Cell 159:1404–16CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Krude H, Biebermann H, Luck W, Horn R, Brabant G, Grüters A. (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature genetics. 19(2):155–7CrossRefPubMedGoogle Scholar
  30. 30.
    Aslan IR, Ranadive SA, Valle I, et al (2014) The melanocortin system and insulin resistance in humans: insights from a patient with complete POMC deficiency and type 1 diabetes mellitus. Int J Obes (Lond) 38:148–51CrossRefGoogle Scholar
  31. 31.
    Clement K, Dubern B, Mencarelli M, et al (2008) Unexpected endocrine features and normal pigmentation in a young adult patient carrying a novel homozygous mutation in the POMC gene. J Clin Endocrinol Metab 93:4955–62CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cirillo G, Marini R, Ito S, et al (2012) Lack of red hair phenotype in a North-African obese child homozygous for a novel POMC null mutation: nonsense-mediated decay RNA evaluation and hair pigment chemical analysis. Br J Dermatol 167:1393–5CrossRefPubMedGoogle Scholar
  33. 33.
    Hung CN, Poon WT, Lee CY, et al (2012) A case of early-onset obesity, hypocortisolism, and skin pigmentation problem due to a novel homozygous mutation in the proopiomelanocortin (POMC) gene in an Indian boy. J Pediatr Endocrinol Metab 25:175–9CrossRefPubMedGoogle Scholar
  34. 34.
    Özen S, Özcan N, Uçar SK, et al (2015) Unexpected clinical features in a female patient with proopiomelanocortin (POMC) deficiency. J Pediatr Endocrinol Metab 28:691–4CrossRefPubMedGoogle Scholar
  35. 35.
    Krude H, Biebermann H, Luck W, et al (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19:155–7CrossRefPubMedGoogle Scholar
  36. 36.
    Biebermann H, Castañeda TR, van Landeghem F, et al (2006) A role for β-melanocyte-stimulating hormone in human body-weight regulation. Cell Metab 3:141–6CrossRefPubMedGoogle Scholar
  37. 37.
    Challis BG, Pritchard LE, Creemers JW, et al (2002) A missense mutation disrupting a dibasic prohormone processing site in proopiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum Mol Gen 11:1997–2004CrossRefPubMedGoogle Scholar
  38. 38.
    Dubern B, Lubrano-Berthelier C, Mencarelli M, et al (2008) Mutational analysis of the pro-opiomelanocortin gene in French obese children led to the identification of a novel deleterious heterozygous mutation located in the α-melanocyte stimulating hormone domain. Pediatr Res 63:211–6CrossRefPubMedGoogle Scholar
  39. 39.
    Jackson RS, Creemers JW, Ohagi S, et al (1997) Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 16:303–6CrossRefPubMedGoogle Scholar
  40. 40.
    Farooqi IS, Volders K, Stanhope R, et al (2007) Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. J Clin Endocrinol Metab 92:3369–73CrossRefPubMedGoogle Scholar
  41. 41.
    Harter B, Fuchs I, Muller T, et al (2016) Early clinical diagnosis of PC1/3 deficiency in a patient with a novel homozygous PCSK1 splice-site mutation. J Pediatr Gastroenterol Nutr 62:577–80CrossRefPubMedGoogle Scholar
  42. 42.
    Martín MG, Lindberg I, Solorzano-Vargas RS, et al (2013) Congenital proprotein convertase 1/3 deficiency causes malabsorptive diarrhea and other endocrinopathies in a pediatric cohort. Gastroenterology 145:138–48CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    O’Rahilly S, Gray H, Humphreys PJ, et al (1995) Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N Engl J Med 333:1386–90CrossRefPubMedGoogle Scholar
  44. 44.
    Jackson RS, Creemers JW, Farooqi IS, et al (2003) Smallintestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J Clin Invest 112:1550CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Frank GR, Fox J, Candela N, et al (2013) Severe obesity and diabetes insipidus in a patient with PCSK1 deficiency. Mol Genet Metab 110:191–4CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Philippe J, Stijnen P, Meyre D, et al (2015) A nonsense lossof- function mutation in PCSK1 contributes to dominantly inherited human obesity. Int J Obes (Lond) 39:295–302CrossRefGoogle Scholar
  47. 47.
    Blanco EH, Ramos-Molina B, Lindberg I (2015) Revisiting PC1/3 mutants: dominant-negative effect of endoplasmic reticulumretained mutants. Endocrinology 156:3625–37CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Creemers JW, Choquet H, Stijnen P, et al (2012) Heterozygous mutations causing partial prohormone convertase 1 deficiency contribute to human obesity. Diabetes 61:383–90CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Farooqi IS, Keogh JM, Yeo GS, et al (2003) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348:1085–95CrossRefPubMedGoogle Scholar
  50. 50.
    Vaisse C, Clement K, Guy-Grand B, et al (1998) A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 20:113–4CrossRefPubMedGoogle Scholar
  51. 51.
    Yeo GS, Farooqi IS, Aminian S, et al (1998) A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 20:111–2CrossRefPubMedGoogle Scholar
  52. 52.
    Dubern B, Bisbis S, Talbaoui H, et al (2007) Homozygous null mutation of the melanocortin-4 receptor and severe early-onset obesity. J Pediatr 150:613–7.e1CrossRefPubMedGoogle Scholar
  53. 53.
    Vollbach H, Brandt S, Lahr G, et al (2016) Prevalence and phenotypic characterization of MC4R variants in a large pediatric cohort. Int J Obes (Lond) 41(1):13–22CrossRefGoogle Scholar
  54. 54.
    Farooqi IS, Yeo GS, Keogh JM, et al (2000) Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest 106:271CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Timpson NJ, Sayers A, Davey-Smith G, et al (2009) How does body fat influence bone mass in childhood? A Mendelian randomization approach. J Bone Miner Res 24:522–33CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Stutzmann F, Tan K, Vatin V, et al (2008) Prevalence of melanocortin-4 receptor deficiency in Europeans and their agedependent penetrance in multigenerational pedigrees. Diabetes 57:2511–8CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lee YS, Poh LKS, Kek BLK, et al (2007) The role of melanocortin 3 receptor gene in childhood obesity. Diabetes 56:2622–30CrossRefPubMedGoogle Scholar
  58. 58.
    Mencarelli M, Dubern B, Alili R, et al (2011) Rare melanocortin- 3 receptor mutations with in vitro functional consequences are associated with human obesity. Hum Mol Gen 20:392–9CrossRefPubMedGoogle Scholar
  59. 59.
    Zegers D, Beckers S, de Freitas F, et al (2011) Identification of three novel genetic variants in the melanocortin-3 receptor of obese children. Obesity (Silver Spring) 19:152–9CrossRefGoogle Scholar
  60. 60.
    Yang F, Huang H, Tao YX (2015) Biased signalling in naturally occurring mutations in human melanocortin-3 receptor gene. Int J Biol Sci 11:423–33CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Asai M, Ramachandrappa S, Joachim M, et al (2013) Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science 341:275–8CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Chan LF, Webb TR, Chung TT, et al (2009) MRAP and MRAP2 are bidirectional regulators of the melanocortin receptor family. Proc Natl Acad Sci 106:6146–51CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Novoselova TV, Larder R, Rimmington D, et al (2016) Loss of Mrap2 is associated with Sim1 deficiency and increased circulating cholesterol. J Endocrinol 230:13–26CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Schonnop L, Kleinau G, Herrfurth N, et al (2016) Decreased melanocortin-4 receptor function conferred by an infrequent variant at the human melanocortin receptor accessory protein 2 gene. Obesity (Silver Spring) 24:1976–82CrossRefGoogle Scholar
  65. 65.
    Bonaglia MC, Ciccone R, Gimelli G, et al (2008) Detailed phenotype–genotype study in five patients with chromosome 6q16 deletion: narrowing the critical region for Prader-Willi-like phenotype. Eur J Hum Genet 16:1443–9CrossRefPubMedGoogle Scholar
  66. 66.
    El Khattabi L, Guimiot F, Pipiras E, et al (2015) Incomplete penetrance and phenotypic variability of 6q16 deletions including SIM1. Eur J Hum Genet 23:1010–8CrossRefPubMedGoogle Scholar
  67. 67.
    Michaud JL, DeRossi C, May NR, et al (2000) ARNT2 acts as the dimerization partner of SIM1 for the development of the hypothalamus. Mech Dev 90:253–61CrossRefPubMedGoogle Scholar
  68. 68.
    Michaud JL, Boucher F, Melnyk A, et al (2001) Sim1 haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum Mol Gen 10:1465–73CrossRefPubMedGoogle Scholar
  69. 69.
    Holder JL, Butte NF, Zinn AR (2000) Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum Mol Gen 9:101–8CrossRefPubMedGoogle Scholar
  70. 70.
    Izumi K, Housam R, Kapadia C, et al (2013) Endocrine phenotype of 6q16.1-q21 deletion involving SIM1 and Prader-Willi syndrome-like features. Am J Med Genet A 161A: 3137–43CrossRefPubMedGoogle Scholar
  71. 71.
    Bonnefond A, Raimondo A, Stutzmann F, et al (2013) Lossof- function mutations in SIM1 contribute to obesity and Prader-Willi-like features. J Clin Invest 123:3037CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Montagne L, Raimondo A, Delobel B, et al (2014) Identification of two novel loss-of-function SIM1 mutations in two overweight children with developmental delay. Obesity 22:2621–4PubMedGoogle Scholar
  73. 73.
    Ramachandrappa S, Raimondo A, Cali AM, et al (2013) Rare variants in single-minded 1 (SIM1) are associated with severe obesity. J Clin Invest 123:3042CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Gray J, Yeo GS, Cox JJ, et al (2006) Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes 55:3366–71CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Han JC, Liu QR, Jones M, et al (2008) Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N Engl J Med 359:918–27CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Shinawi M, Sahoo T, Maranda B, et al (2011) 11p14.1 microdeletions associated with ADHD, autism, developmental delay, and obesity. Am J Med GenetA 155A:1272–80CrossRefGoogle Scholar
  77. 77.
    Xu B, Goulding EH, Zang K, et al (2003) Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci 6:736–42CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Yeo GS, Connie Hung CC, Rochford J, et al (2004) A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci 7:1187–9CrossRefPubMedGoogle Scholar
  79. 79.
    Gray J, Yeo G, Hung C, et al (2007) Functional characterization of human NTRK2 mutations identified in patients with severe early-onset obesity. Int J Obes 31:359–64CrossRefGoogle Scholar
  80. 80.
    Li Z, Zhou Y, Carter-Su C, et al (2007) SH2B1 enhances leptin signaling by both Janus-kinase 2 Tyr813 phosphorylationdependent and-independent mechanisms. Mol Endocrinol 21:2270–81CrossRefPubMedGoogle Scholar
  81. 81.
    Doche ME, Bochukova EG, Su H-W, et al (2012) Human SH2B1 mutations are associated with maladaptive behaviors and obesity. J Clin Invest 122:4732CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Pearce LR, Joe R, Doche ME, et al (2014) Functional characterization of obesity-associated variants involving the α- and β-isoforms of human SH2B1. Endocrinology 155:3219–26CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Bachmann-Gagescu R, Mefford HC, Cowan C, et al (2010) Recurrent 200-kb deletions of 16p11. 2 that include the SH2B1 gene are associated with developmental delay and obesity. Genet Med 12:641–7CrossRefPubMedGoogle Scholar
  84. 84.
    Pearce LR, Atanassova N, Banton MC, et al (2013) KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation. Cell 155:765–77CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Huvenne H, Dubern B, Clement K, et al (2016) Rare genetic forms of obesity: clinical approach and current treatments in 2016. Obes Facts 9:158–73CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Phan-Hug F, Beckmann JS, Jacquemont S (2012) Genetic testing in patients with obesity. Best Pract Res Clin Endocrinol Metab 26:133–43CrossRefPubMedGoogle Scholar
  87. 87.
    Farooqi IS, Matarese G, Lord GM, et al (2002) Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 110:1093–103CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Frank S, Heni M, Moss A, et al (2013) Long-term stabilization effects of leptin on brain functions in a leptin-deficient patient 8 (6):e65893Google Scholar
  89. 89.
    Reinehr T, Hebebrand J, Friedel S, et al (2009) Lifestyle intervention in obese children with variations in the melanocortin 4 receptor gene. Obesity (Silver Spring) 17:382–9CrossRefGoogle Scholar
  90. 90.
    Santoro N, Perrone L, Cirillo G, et al (2006) Weight loss in obese children carrying the proopiomelanocortin R236G variant. J Endocrinol Invest 29:226–30CrossRefPubMedGoogle Scholar
  91. 91.
    Kuhnen P, Clement K, Wiegand S, et al (2016) Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N Engl J Med 375:240–6CrossRefPubMedGoogle Scholar
  92. 92.
    Aslan IR, Ranadive SA, Ersoy BA, et al (2011) Bariatric surgery in a patient with complete MC4R deficiency. Int J Obes (Lond) 35:457–61CrossRefGoogle Scholar
  93. 93.
    Valette M, Poitou C, Le Beyec J, et al (2012) Melanocortin-4 receptor mutations and polymorphisms do not affect weight loss after bariatric surgery. PLoS One 7:e48221CrossRefGoogle Scholar
  94. 94.
    Meyre D, Froguel P, Horber FF, et al (2014) Comment on: Valette et al melanocortin-4 receptor mutations and polymorphisms do not affect weight loss after bariatric surgery. PLos One (2012) 7:e48221. PLoS One 9:e93324CrossRefGoogle Scholar
  95. 95.
    Bonnefond A, Keller R, Meyre D, et al (2016) Eating behavior, low-frequency functional mutations in the melanocortin-4 receptor (MC4R) gene, and outcomes of bariatric operations: a 6-year prospective study. Diabetes Care 39:1384–92CrossRefPubMedGoogle Scholar
  96. 96.
    Ho AL, Sussman ES, Pendharkar AV, et al (2015) Deep brain stimulation for obesity: rationale and approach to trial design. Neurosurg Focus 38:e8CrossRefGoogle Scholar

Copyright information

© Lavoisier 2017

Authors and Affiliations

  1. 1.INSERM U954, NGERE-Nutrition, Genetics, and Environmental Risk ExposureUniversité de LorraineVandoeuvre-lès-NancyFrance
  2. 2.Service de nutrition, CHRU de Lilleuniversité de LilleLilleFrance
  3. 3.Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonCanada
  4. 4.Department of Clinical Epidemiology and BiostatisticsMcMaster UniversityHamiltonCanada

Personalised recommendations