Advertisement

Obésité

, Volume 12, Issue 4, pp 267–276 | Cite as

La T-cadhérine, troisième récepteur de l’adiponectine : structure et rôle en santé humaine

  • A. Nicolas
  • J.-P. Bastard
  • K. Bailly
  • M. Andrieu
  • F. Fumeron
Article De Synthèse/Review Article
  • 35 Downloads

Résumé

La T-cadhérine est une protéine abondamment exprimée dans le système cardiovasculaire, notamment dans les cellules endothéliales et musculaires lisses. C’est un récepteur des formes de plus haut poids moléculaire de l’adiponectine (HMW–Hight Molecular Weight, MMW–Medium Molecular Weight), mais du fait de son absence de domaine transmembranaire et cytoplasmique capable de transmettre le signal, elle jouerait un rôle de corécepteur. Elle est impliquée dans le remodelage de la paroi vasculaire et l’angiogenèse. Dans certains modèles, la T-cadhérine est indispensable à l’effet cardioprotecteur et à la revascularisation induits par l’adiponectine. Les polymorphismes du gène de la T-cadhérine (CDH13) se retrouvent aux premiers rangs dans les études d’associations pangénomiques sur les déterminants des concentrations plasmatiques d’adiponectine et sont parfois associés au risque cardiométabolique. Nos études dans la population française montrent une association de ces polymorphismes avec l’indice de masse corporelle, le diabète de type 2 et la néphropathie chez des sujets diabétiques de type 1. La T-cadhérine pourrait exercer des effets pléiotropiques dans la physiopathologie humaine, parfois liés à l’adiponectine, mais également indépendants.

Mots clés

Adiponectine T-cadhérine Système cardiovasculaire Polymorphismes génétiques 

T-Cadherin, the Third Adiponectin Receptor: Characteristics and Role in Human Health

Abstract

T-cadherin shows abundant expression in the cardiovascular system, in particular, in endothelial and smooth muscle cells. T-cadherin is a receptor for Hight Molecular Weight (HMW) and Medium Molecular Weight (MMW) isoforms of adiponectin, but due to the lack of transmembrane and cytoplasmic domains that are able to transmit the signal, T-cadherin rather acts as a co-receptor. T-cadherin is involved in remodeling of vascular walls and angiogenesis. In some models, T-cadherin plays critical roles in adiponectin-mediated revascularization and mediates the cardiac protective role of adiponectin. T-cadherin gene (CDH13) polymorphisms are strongly associated with adiponectin levels in genome wide association studies, and sometimes also with cardiometabolic risk. Our studies in the French population show associations between these polymorphisms and body mass index, type 2 diabetes, and nephropathy in subjects with type 1 diabetes. T-cadherin might have pleiotropic effects in human pathophysiology, both dependent and independent of plasma adiponectin levels.

Keywords

Adiponectin T-Cadherin Cardiovascular 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yamauchi T, Kamon J, Ito Y, et al (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–9CrossRefPubMedGoogle Scholar
  2. 2.
    Hug CJ, Wang NS, Ahmad JS, et al (2004) T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci U S A 101:10308–13CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yap AS, Brieher WM, Gumbiner BM (1997) Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol 13:119–46CrossRefPubMedGoogle Scholar
  4. 4.
    Philippova MP, Bochkov VN, Stambolsky DV, et al (1998) T-cadherin and signal-transducing molecules co-localize in caveolin-rich membrane domains of vascular smooth muscle cells. FEBS Lett 429:207–10CrossRefPubMedGoogle Scholar
  5. 5.
    Lee SW (1996) H-cadherin, a novel cadherin with growth inhibitory functions and diminished expression in human breast cancer. Nat Med 2:776–82CrossRefPubMedGoogle Scholar
  6. 6.
    Angst BD, Marcozzi C, Magee AI (2001) The cadherin superfamily: diversity in form and function. J Cell Sci 114:629–41PubMedGoogle Scholar
  7. 7.
    van Roy F, Berx G (2008) The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65:3756–88CrossRefPubMedGoogle Scholar
  8. 8.
    Harada H, Kimura A, Fukino K, et al (2002) Genomic structure and eight novel exonic polymorphisms of the human N-cadherin gene. J Hum Genet 47:330–2CrossRefPubMedGoogle Scholar
  9. 9.
    Begemann M, Tan SS, Cunningham BA, et al (1990) Expression of chicken liver cell adhesion molecule fusion genes in transgenic mice. Proc Natl Acad Sci U S A 87:9042–6CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ringwald M, Schuh R, Vestweber D, et al (1987) The structure of cell adhesion molecule uvomorulin. Insights into the molecular mechanism of Ca2+-dependent cell adhesion. EMBO J 6:3647–53PubMedPubMedCentralGoogle Scholar
  11. 11.
    Jarrard DF, Paul R, van Bokhoven A, et al (1997) P-cadherin is a basal cell-specific epithelial marker that is not expressed in prostate cancer. Clin Cancer Res 3:2121–8PubMedGoogle Scholar
  12. 12.
    Whyte DA, Li C, Thomson RB, et al (1999) Ksp-cadherin gene promoter. I. Characterization and renal epithelial cell-specific activity. Am J Physiol — Ren Physiol 277:F587–F98CrossRefGoogle Scholar
  13. 13.
    Bromhead C, Miller JH, McDonald FJ (2006) Regulation of T-cadherin by hormones, glucocorticoid and EGF. Gene 374:58–67CrossRefPubMedGoogle Scholar
  14. 14.
    Sato M, Mori Y, Sakurada A, et al (1998) The H-cadherin (CDH13) gene is inactivated in human lung cancer. Hum Genet 103:96–101CrossRefPubMedGoogle Scholar
  15. 15.
    Kuzmenko YS, Stambolsky D, Kern F, et al (1998) Characteristics of smooth muscle cell lipoprotein binding proteins (p105/p130) as T-cadherin and regulation by positive and negative growth regulators. Biochem Biophys Res Commun 246:489–94CrossRefPubMedGoogle Scholar
  16. 16.
    Wang XD, Wang BE, Soriano R, et al (2007) Expression profiling of the mouse prostate after castration and hormone replacement: implication of H-cadherin in prostate tumorigenesis. Differentiation 75:219–34CrossRefPubMedGoogle Scholar
  17. 17.
    Adachi Y, Takeuchi T, Nagayama T, et al (2009) Zeb1-mediated T-cadherin repression increases the invasive potential of gallbladder cancer. FEBS Lett 583:430–6CrossRefPubMedGoogle Scholar
  18. 18.
    Putku M, Kals M, Inno R, et al (2015) CDH13 promoter SNPs with pleiotropic effect on cardiometabolic parameters represent methylation QTLs. Hum Genet 134:291–303CrossRefPubMedGoogle Scholar
  19. 19.
    Joshi MB, Philippova M, Ivanov D, et al (2005) T-cadherin protects endothelial cells from oxidative stress-induced apoptosis. FASEB J 19:1737–9PubMedGoogle Scholar
  20. 20.
    Joshi MB, Ivanov D, Philippova M, et al (2008) A requirement for thioredoxin in redox-sensitive modulation of T-cadherin expression in endothelial cells. Biochem J 416:271–80CrossRefPubMedGoogle Scholar
  21. 21.
    Ranscht B, Dours-Zimmermann MT (1991) T-cadherin, a novel cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region. Neuron 7:391–402CrossRefPubMedGoogle Scholar
  22. 22.
    Tanihara H, Sano K, Heimark RL, et al (1994) Cloning of five human cadherins clarifies characteristic features of cadherin extracellular domain and provides further evidence for two structurally different types of cadherin. Cell Adhes Commun 2:15–26CrossRefPubMedGoogle Scholar
  23. 23.
    Dames SA, Bang E, Haüssinger D, et al (2008) Insights into the low adhesive capacity of human T-cadherin from the NMR structure of its N-terminal extracellular domain. J Biol Chem 283:23485–95CrossRefPubMedGoogle Scholar
  24. 24.
    Lambeng N, Wallez Y, Rampon C, et al (2005) Vascular endothelial-cadherin tyrosine phosphorylation in angiogenic and quiescent adult tissues. Circ Res 96:384–91CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Stambolsky DV, Kuzmenko YS, Philippova MP, et al (1999) Identification of 130 kDa cell surface LDL-binding protein from smooth muscle cells as a partially processed T-cadherin precursor. Biochim Biophys Acta 1416:155–60CrossRefPubMedGoogle Scholar
  26. 26.
    Sacristán MP, Vestal DJ, Dours-Zimmermann MT, et al (1993) T-cadherin 2: Molecular characterization, function in cell adhesion, and coexpression with T-cadherin and N-cadherin. J Neurosci Res 34:664–80CrossRefPubMedGoogle Scholar
  27. 27.
    Philippova M, Joshi MB, Kyriakakis E, et al (2009) A guide and guard: the many faces of T-cadherin. Cell Signal 21:1035–44CrossRefPubMedGoogle Scholar
  28. 28.
    Ivanov D, Philippova M, Antropova J, et al (2001) Expression of cell adhesion molecule T-cadherin in the human vasculature. Histochem Cell Biol 115:231–42PubMedGoogle Scholar
  29. 29.
    Vestal DJ, Ranscht B (1992) Glycosyl phosphatidylinositolanchored T-cadherin mediates calcium-dependent, homophilic cell adhesion. J Cell Biol 119:451–61CrossRefPubMedGoogle Scholar
  30. 30.
    Philippova M, Ivanov D, Tkachuk V, et al (2003) Polarisation of T-cadherin to the leading edge of migrating vascular cells in vitro: a function in vascular cell motility? Histochem Cell Biol 120:353–60CrossRefPubMedGoogle Scholar
  31. 31.
    Riou P, Saffroy R, Chenailler C, et al (2006) Expression of T-cadherin in tumor cells influences invasive potential of human hepatocellular carcinoma. FASEB J 20:2291–301CrossRefPubMedGoogle Scholar
  32. 32.
    Philippova M, Bochkov V, Stambolsky D, et al (1998) T-cadherin and signal-transducing molecules co-localize in caveolin-rich membrane domains of vascular smooth muscle cells. FEBS Lett 429:207–10CrossRefPubMedGoogle Scholar
  33. 33.
    Doyle DD, Goings GE, Upshaw-Earley J, et al (1998) T-cadherin is a major glycophosphoinositol-anchored protein associated with noncaveolar detergent-insoluble domains of the cardiac sarcolemma. J Biol Chem 273:6937–43CrossRefPubMedGoogle Scholar
  34. 34.
    Arnemann J, Sultani O, Hasgün D, et al (2006) T-/H-cadherin (CDH13): a new marker for differentiating podocytes. Virchows Arch Int J Pathol 448:160–4CrossRefGoogle Scholar
  35. 35.
    Tyrberg B, Miles P, Azizian KT, et al (2011) T-cadherin (CDH13) in association with pancreatic β-cell granules contributes to second phase insulin secretion. Islets 3:327–37CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Niermann T, Kern F, Erne P, et al (2000) The glycosyl phosphatidylinositol anchor of human T-cadherin binds lipoproteins. Biochem Biophys Res Commun 276:1240–7CrossRefPubMedGoogle Scholar
  37. 37.
    Philippova M, Ivanov D, Joshi MB, et al (2008) Identification of proteins associating with glycosylphosphatidylinositol-anchored T-cadherin on the surface of vascular endothelial cells: role for Grp78/BiP in T-cadherin-dependent cell survival. Mol Cell Biol 28:4004–17CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Philippova M, Ivanov D, Allenspach R, et al (2005) RhoA and Rac mediate endothelial cell polarization and detachment induced by T-cadherin. FASEB J 19:588–90PubMedGoogle Scholar
  39. 39.
    Adachi Y, Takeuchi T, Sonobe H, et al (2006) An adiponectin receptor, T-cadherin, was selectively expressed in intratumoral capillary endothelial cells in hepatocellular carcinoma: possible cross talk between T-cadherin and FGF-2 pathways. Virchows Arch Int J Pathol 448:311–8CrossRefGoogle Scholar
  40. 40.
    Philippova M, Banfi A, Ivanov D, et al (2006) Atypical GPIanchored T-cadherin stimulates angiogenesis in vitro and in vivo. Arterioscler Thromb Vasc Biol 26:2222–30CrossRefPubMedGoogle Scholar
  41. 41.
    Hebbard LW, Garlatti M, Young LJT, et al (2008) T-cadherin supports angiogenesis and adiponectin association with the vasculature in a mouse mammary tumor model. Cancer Res 68:1407–16CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ivanov DB, Philippova MP, Tkachuk VA (2001) Structure and functions of classical cadherins. Biochemistry 66:1174–86PubMedGoogle Scholar
  43. 43.
    Takahashi T, Saegusa S, Sumino H, et al (2005) Adiponectin, T-cadherin and tumour necrosis factor-alpha in damaged cardiomyocytes from autopsy specimens. J Int Med Res 33:236–44CrossRefPubMedGoogle Scholar
  44. 44.
    Denzel MS, Scimia MC, Zumstein PM, et al (2010) T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J Clin Invest 120:4342–52CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ivanov D, Philippova M, Allenspach R, et al (2004) T-cadherin upregulation correlates with cell-cycle progression and promotes proliferation of vascular cells. Cardiovasc Res 64:132–43CrossRefPubMedGoogle Scholar
  46. 46.
    Ivanov D, Philippova M, Tkachuk V, et al (2004) Cell adhesion molecule T-cadherin regulates vascular cell adhesion, phenotype and motility. Exp Cell Res 293:207–18CrossRefPubMedGoogle Scholar
  47. 47.
    Wyder L, Vitaliti A, Schneider H, et al (2000) Increased expression of H/T-cadherin in tumor-penetrating blood vessels. Cancer Res 60:4682–8PubMedGoogle Scholar
  48. 48.
    Ghosh S, Joshi MB, Ivanov D, et al (2007) Use of multicellular tumor spheroids to dissect endothelial cell-tumor cell interactions: a role for T-cadherin in tumor angiogenesis. FEBS Lett 581:4523–8CrossRefPubMedGoogle Scholar
  49. 49.
    Rubina K, Kalinina N, Potekhina A, et al (2007) T-cadherin suppresses angiogenesis in vivo by inhibiting migration of endothelial cells. Angiogenesis 10:183–95CrossRefPubMedGoogle Scholar
  50. 50.
    Kudrjashova E, Bashtrikov P, Bochkov V, et al (2002) Expression of adhesion molecule T-cadherin is increased during neointima formation in experimental restenosis. Histochem Cell Biol 118:281–90PubMedGoogle Scholar
  51. 51.
    Okamoto Y, Arita Y, Nishida M, et al (2000) An adipocytederived plasma protein, adiponectin, adheres to injured vascular walls. Horm Metab Res 32:47–50CrossRefPubMedGoogle Scholar
  52. 52.
    Fujishima Y, Maeda N, Matsuda K, et al (2017) Adiponectin association with T-cadherin protects against neointima proliferation and atherosclerosis. FASEB J 31:1571–83CrossRefPubMedGoogle Scholar
  53. 53.
    Parker-Duffen JL, Nakamura K, Silver M, et al (2013) T-cadherin is essential for adiponectin-mediated revascularization. J Biol Chem 288:24886–97CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Parker-Duffen JL, Walsh K (2014) Cardiometabolic effects of adiponectin. Best Pract Res Clin Endocrinol Metab 28:81–91CrossRefPubMedGoogle Scholar
  55. 55.
    Tkachuk VA, Bochkov VN, Philippova MP, et al (1998) Identification of an atypical lipoprotein-binding protein from human aortic smooth muscle as T-cadherin. FEBS Lett 421:208–12CrossRefPubMedGoogle Scholar
  56. 56.
    Kipmen-Korgun D, Osibow K, Zoratti C, et al (2005) T-cadherin mediates low-density lipoprotein-initiated cell proliferation via the Ca(2+)-tyrosine kinase-Erk1/2 pathway. J Cardiovasc Pharmacol 45:418–30CrossRefPubMedGoogle Scholar
  57. 57.
    Rubina K, Talovskaya E, Cherenkov V, et al (2005) LDL induces intracellular signalling and cell migration via atypical LDLbinding protein T-cadherin. Mol Cell Biochem 273:33–41CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Philippova M, Suter Y, Toggweiler S, et al (2011) T-cadherin is present on endothelial microparticles and is elevated in plasma in early atherosclerosis. Eur Heart J 32:760–71CrossRefPubMedGoogle Scholar
  59. 59.
    Hui X, Gu P, Zhang J, et al (2015) Adiponectin enhances coldinduced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab 22:279–90CrossRefPubMedGoogle Scholar
  60. 60.
    Khetani SR, Chen AA, Ranscht B, et al (2008) T-cadherin modulates hepatocyte functions in vitro. FASEB J 22:3768–75CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Asada K, Yoshiji H, Noguchi R, et al (2007) Crosstalk between high-molecular-weight adiponectin and T-cadherin during liver fibrosis development in rats. Int J Mol Med 20:725–9PubMedGoogle Scholar
  62. 62.
    Kawashima K, Maeda K, Saigo C, et al (2017) Adiponectin and intelectin-1: important adipokine players in obesity-related colorectal carcinogenesis. Int J Mol Sci 18:e866CrossRefPubMedCentralGoogle Scholar
  63. 63.
    Chung CM, Lin TH, Chen JW, et al (2011) A genome-wide association study reveals a quantitative trait locus of adiponectin on CDH13 that predicts cardiometabolic outcomes. Diabetes 60:2417–23CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kitamoto A, Kitamoto T, Nakamura T, et al (2016) CDH13 polymorphisms are associated with adiponectin levels and metabolic syndrome traits independently of visceral fat mass. J Atheroscler Thromb 23:309–19CrossRefPubMedGoogle Scholar
  65. 65.
    Morisaki H, Yamanaka I, Iwai N, et al (2012) CDH13 gene coding T-cadherin influences variations in plasma adiponectin levels in the Japanese population. Hum Mutat 33:402–10CrossRefPubMedGoogle Scholar
  66. 66.
    Jee SH, Sull JW, Lee JE, et al (2010) Adiponectin concentrations: a genome-wide association study. Am J Hum Genet 87:545–52CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Teng MS, Hsu LA, Wu S, et al (2015) Association of CDH13 genotypes/haplotypes with circulating adiponectin levels, metabolic syndrome, and related metabolic phenotypes: the role of the suppression effect. PloS One 10:0122664Google Scholar
  68. 68.
    Dastani Z, Hivert MF, Timpson N, et al (2012) Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet 8:e1002607CrossRefGoogle Scholar
  69. 69.
    Fava C, Danese E, Montagnana M, et al (2011) A variant upstream of the CDH13 adiponectin receptor gene and metabolic syndrome in Swedes. Am J Cardiol 108:1432–7CrossRefPubMedGoogle Scholar
  70. 70.
    Org E, Eyheramendy S, Juhanson P, et al (2009) Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Hum Mol Genet 18:2288–96CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Gao H, Kim YM, Chen P, et al (2013) Genetic variation in CDH13 is associated with lower plasma adiponectin levels but greater adiponectin sensitivity in East Asian populations. Diabetes 62:4277–83CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Uetani E, Tabara Y, Kawamoto R, et al (2014) CDH13 genotypedependent association of high-molecular weight adiponectin with all-cause mortality: the J-SHIPP study. Diabetes Care 37:396–401CrossRefPubMedGoogle Scholar
  73. 73.
    Nicolas A, Aubert R, Bellili-Muñoz N, et al (2017) T-cadherin gene variants are associated with type 2 diabetes and the fatty liver index in the French population. Diabetes Metab 43:33–9CrossRefPubMedGoogle Scholar
  74. 74.
    Teng MS, Wu S, Hsu LA, et al (2015) Differential associations between CDH13 genotypes, adiponectin levels, and circulating levels of cellular adhesive molecules. Mediators Inflamm 2015:635751CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Hadjadj S, Aubert R, Fumeron F, et al (2005) Increased plasma adiponectin concentrations are associated with microangiopathy in type 1 diabetes subjects. Diabetologia 48:1088–92CrossRefPubMedGoogle Scholar
  76. 76.
    Nicolas A, Mohammedi K, Bastard JP, et al (2017) T-cadherin gene variants are associated with nephropathy in subjects with type 1 diabetes. Nephrol Dial Transplant. doi: 10.1093/ndt/gfx071. [Epub ahead of print]Google Scholar
  77. 77.
    Schoenenberger AW, Pfaff D, Dasen B, et al (2015) Genderspecific associations between circulating T-cadherin and high molecular weight-adiponectin in patients with stable coronary artery disease. PLoS One 10:e0131140CrossRefGoogle Scholar

Copyright information

© Lavoisier 2017

Authors and Affiliations

  • A. Nicolas
    • 1
    • 2
    • 3
  • J.-P. Bastard
    • 4
    • 5
    • 6
  • K. Bailly
    • 7
  • M. Andrieu
    • 7
  • F. Fumeron
    • 1
    • 2
    • 3
    • 8
  1. 1.Inserm, UMR-S 1138centre de recherches des CordeliersParisFrance
  2. 2.Sorbonne universités, UPMC université Paris-VIUMR-S 1138, centre de recherche des CordeliersParisFrance
  3. 3.Université Paris-Descartes, Sorbonne-Paris-CitéUMR_S 1138, centre de recherche des CordeliersParisFrance
  4. 4.Service de biochimie et hormonologie, UF biomarqueurs inflammatoires et métaboliqueshôpital Tenon, AP–HPParisFrance
  5. 5.Inserm UMR S938, ICANCDR Saint-AntoineParisFrance
  6. 6.Sorbonne UniversitésUPMC université Paris-VIParisFrance
  7. 7.Plateforme de cytométrie et d’immunobiologie CYBIO, institut Cochin — Inserm U1016, CNRS UMR 8104université Paris-DescartesParisFrance
  8. 8.Université Paris-Diderot, Sorbonne-Paris-Cité, UMR_S 1138centre de recherche des CordeliersParisFrance

Personalised recommendations