Human microbiome and prostate cancer development: current insights into the prevention and treatment

Abstract

The huge communities of microorganisms that symbiotically colonize humans are recognized as significant players in health and disease. The human microbiome may influence prostate cancer development. To date, several studies have focused on the effect of prostate infections as well as the composition of the human microbiome in relation to prostate cancer risk. Current studies suggest that the microbiota of men with prostate cancer significantly differs from that of healthy men, demonstrating that certain bacteria could be associated with cancer development as well as altered responses to treatment. In healthy individuals, the microbiome plays a crucial role in the maintenance of homeostasis of body metabolism. Dysbiosis may contribute to the emergence of health problems, including malignancy through affecting systemic immune responses and creating systemic inflammation, and changing serum hormone levels. In this review, we discuss recent data about how the microbes colonizing different parts of the human body including urinary tract, gastrointestinal tract, oral cavity, and skin might affect the risk of developing prostate cancer. Furthermore, we discuss strategies to target the microbiome for risk assessment, prevention, and treatment of prostate cancer.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68(1): 7–30

    Google Scholar 

  2. 2.

    Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, Bray F. International variation in prostate cancer incidence and mortality rates. Eur Urol 2012; 61(6): 1079–1092

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Kimura T, Egawa S. Epidemiology of prostate cancer in Asian countries. Int J Urol 2018; 25: 524–531

    PubMed  Google Scholar 

  4. 4.

    Nowroozi MR, Momeni SA, Ohadian Moghadam S, Ayati E, Mortazavi A, Arfae S, Jamshidian H, Taherimahmoudi M, Ayati M. Prostate-specific antigen density and gleason score predict adverse pathologic features in patients with clinically localized prostate cancer. Nephrourol Mon Nephrourol Mon 2016; 8(6): e39984

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Moradpour F, Fatemi Z. Estimation of the projections of the incidence rates, mortality and prevalence due to common cancer site in Isfahan, Iran. Asian Pac J Cancer Prev 2013; 14(6): 3581–3585

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Sfanos KS, Isaacs WB, De Marzo AM. Infections and inflammation in prostate cancer. Am J Clin Exp Urol 2013; 1(1): 3–11

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Peisch SF, Van Blarigan EL, Chan JM, Stampfer MJ, Kenfield SA. Prostate cancer progression and mortality: a review of diet and lifestyle factors. World J Urol 2017; 35(6): 867–874

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007; 449 (7164): 804–810

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, Taniyama K, Sasaki N, Schlemper RJ. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 2001; 345(11): 784–789

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Sheh A, Fox JG. The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut Microbes 2013; 4(6): 505–531

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis 2016; 22(5): 1137–1150

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Hartstra AV, Bouter KE, Bäckhed F, Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 2015; 38(1): 159–165

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol 2012; 3: 448

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Huycke MM, Gaskins HR. Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp Biol Med (Maywood) 2004; 229(7): 586–597

    CAS  Google Scholar 

  15. 15.

    Wang X, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology 2007; 132(2): 551–561

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Wang X, Yang Y, Moore DR, Nimmo SL, Lightfoot SA, Huycke MM. 4-hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by enterococcus faecalis-infected macrophages. Gastroenterology 2012; 142: 543–551

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Nesic D, Hsu Y, Stebbins CE. Assembly and function of abacterial genotoxin. Nature 2004; 429: 429–433

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Liang W, Ferrara N. The complex role of neutrophils in tumor angiogenesis and metastasis. Cancer Immunol Res 2016; 4: 83–91

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Mima K, Cao Y, Chan AT, Qian ZR, Nowak JA, Masugi Y, et al. Fusobacterium nucleatum in colorectal carcinoma tissue according to tumor location. Clin Transl Gastroenterol 2016; 7: e200

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 2014; 63: 1932–1942

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Zhang Q, Yu N, Lee C. Mysteries of TGF-β paradox in benign and malignant cells. Front Oncol 2014; 4: 94

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Menzies BE. The role of fibronectin binding proteins in the pathogenesis of Staphylococcus aureus infections. Curr Opin Infect Dis 2003; 16: 225–229

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Li N, Ren A, Wang X, Fan X, Zhao Y, Gao GF, Cleary P, Wang B. Influenza viral neuraminidase primes bacterial coinfection through TGF-β-mediated expression of host cell receptors. Proc Natl Acad Sci USA 2015; 112(1): 238–243

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Jakowlew SB. Transforming growth factor-β in cancer and metastasis. Cancer Metastasis Rev 2006; 25(3): 435–457

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Bostwick DG, de la Roza G, Dundore P, Corica FA, Iczkowski KA. Intraepithelial and stromal lymphocytes in the normal human prostate. Prostate 2003; 55: 187–193

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Dikov D, Bachurska S, Staikov D, Sarafian V. Intraepithelial lymphocytes in relation to NIH category IV prostatitis in autopsy prostate. Prostate 2015; 75(10): 1074–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Fujii T, Shimada K, Asai O, Tanaka N, Fujimoto K, Hirao K, Konishi N. Immunohistochemical analysis of inflammatory cells in benign and precancerous lesions and carcinoma of the prostate. Pathobiology 2013; 80(3): 119–126

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Sfanos KS, Yegnasubramanian S, Nelson WG, De Marzo AM. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol 2018; 15: 11–24

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Shrestha E, White JR, Yu SH, Kulac I, Ertunc O, De Marzo AM, Yegnasubramanian S, Mangold LA, Partin AW, Sfanos KS. Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J Urol 2018; 199(1): 161–171

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Virchow R. An address on the value of pathological experiments. Br Med J 1881; 2(1075): 198–203

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140(6): 883–899

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Delongchamps NB, de la Roza G, Chandan V, Jones R, Sunheimer R, Threatte G, et al. Evaluation of prostatitis in autopsied prostates-is chronic inflammation more associated with benign prostatic hyperplasia or cancer? J Urol 2008; 179(5): 1736–1740

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Stark T, Livas L, Kyprianou N. Inflammation in prostate cancer progression and therapeutic targeting. Transl Androl Urol 2015; 4 (4): 455–463

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012; 489(7415): 231–241

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Goris H, de Boer F, van der Waaij D. Myelopoiesis in experimentally contaminated specific-pathogen-free and germfree mice during oral administration of polymyxin. Infect Immun 1985; 50(2): 437–441

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Khosravi A, Yáñez A, Price JG, Chow A, Merad M, Goodridge HS, et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 2014; 15(3): 374–381

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer 2013; 13(11): 800–812

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sheflin AM, Whitney AK, Weir TL. Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep 2014; 16(10): 406

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Horbinski C, Mojesky C, Kyprianou N. Live free or die: tales of homeless (cells) in cancer. Am J Pathol 2010; 177: 1044–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S. Tumor associated macrophages and neutrophils in cancer. Immunobiology 2013; 218(11): 1402–1410

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Puhr M, De Marzo A, Isaacs W, Lucia MS, Sfanos K, Yegnasubramanian S, et al. Inflammation, microbiota, and prostate cancer. Eur Urol Focus 2016; 2(4): 374–382

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Barron DA, Rowley DR. The reactive stroma microenvironment and prostate cancer progression. Endocr Relat Cancer 2012; 19(6): R187–204

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol 2001; 13(5): 555–562

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Armstrong H, Bording-Jorgensen M, Dijk S, Wine E. The complex interplay between chronic inflammation, the microbiome, and cancer: understanding disease progression and what we can do to prevent it. Cancers (Basel) 2018; 10(3): 83

    Google Scholar 

  45. 45.

    Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357: 539–545

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420 (6917): 860–867

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009; 30(7): 1073–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Francescone R, Hou V, Grivennikov SI. Microbiome, inflammation, and cancer. Cancer J 2014; 20(3): 181–189

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, Smith CK, Trinchieri G. Microbes and cancer. Annu Rev Immunol 2017; 35(1): 199–228

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Schatteman PH, Hoekx L, Wyndaele JJ, Jeuris W, Van Marck E. Inflammation in prostate biopsies of men without prostatic malignancy or clinical prostatitis: correlation with total serum PSA and PSA density. Eur Urol 2000; 37(4): 404–412

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Gurel B, Lucia MS, Thompson IM Jr, Goodman PJ, Tangen CM, Kristal AR, et al. Chronic inflammation in benign prostate tissue is associated with high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol Biomarkers Prev 2014; 23(5): 847–856

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    De Nunzio C, Kramer G, Marberger M, Montironi R, Nelson W, Schröder F, et al. The controversial relationship between benign prostatic hyperplasia and prostate cancer: the role of inflammation. Eur Urol 2011; 60(1): 106–117

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Shinohara DB, Vaghasia AM, Yu SH, Mak TN, Brüggemann H, Nelson WG, et al. A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate 2013; 73(9): 1007–1015

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Elkahwaji JE, Zhong W, Hopkins WJ, Bushman W. Chronic bacterial infection and inflammation incite reactive hyperplasia in a mouse model of chronic prostatitis. Prostate 2007; 67(1): 14–21

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Pelouze PS. Gonorrhea in the male and female: a book for practitioners. Philadelphia: W. B. Saunders Company, 1935

    Google Scholar 

  56. 56.

    Poletti F, Medici MC, Alinovi A, Menozzi MG, Sacchini P, Stagni G, et al. Isolation of Chlamydia trachomatis from the prostatic cells in patients affected by nonacute abacterial prostatitis. J Urol 1985; 134(4): 691–693

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Hayes RB, Pottern LM, Strickler H, Rabkin C, Pope V, Swanson GM, et al. Sexual behavior, STDs and risks for prostate cancer. Br J Cancer 2000; 82(3): 718–725

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Maeda H, Akaike T. Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry (Mosc) 1998; 63(7): 854–865

    CAS  Google Scholar 

  59. 59.

    De Marzo AM, Platz EA, Sutcliffe S, Xu J, Grönberg H, Drake CG, Nakai Y, Isaacs WB, Nelson WG. Inflammation in prostate carcinogenesis. Nat Rev Cancer 2007; 7(4): 256–269

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Bultman SJ. Emerging roles of the microbiome in cancer. Carcinogenesis 2014; 35(2): 249–255

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Buchta Rosean CM, Rutkowski MR. The influence of the commensal microbiota on distal tumor-promoting inflammation. Semin Immunol 2017; 32: 62–73

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 2016; 167(4): 1125–1136.e8

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Chu WM. Tumor necrosis factor. Cancer Lett 2013; 328: 222–225

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Suh J, Rabson AB. NF-κB activation in human prostate cancer: important mediator or epiphenomenon? J Cell Biochem 2004; 91: 100–117

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Lee CH, Jeon YT, Kim SH, Song YS. NF-κB as a potential molecular target for cancer therapy. Biofactors 2007; 29(1): 19–35

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Ohadian Moghadam S, Nowroozi MR. Toll-like receptors: the role in bladder cancer development, progression and immunotherapy. Scand J Immunol 2019: e12818

  67. 67.

    Harmey JH, Bucana CD, Lu W, Byrne AM, McDonnell S, Lynch C, et al. Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int J Cancer 2002; 101(5): 415–422

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Simon F, Fernández R. Early lipopolysaccharide-induced reactive oxygen species production evokes necrotic cell death in human umbilical vein endothelial cells. J Hypertens. 2009; 27(6): 1202–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Xu XL, Lee RT, Fang HM, Wang YM, Li R, Zou H, Zhu Y, Wang Y. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 2008; 4(1): 28–39

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Maneval ML, Eckert KA. Effects of oxidative and alkylating damage on microsatellite instability in nontumorigenic human cells. Mutat Res 2004; 546: 29–38

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Cheema AK, Maier I, Dowdy T, Wang Y, Singh R, Ruegger PM, et al. Chemopreventive metabolites are correlated with a change in intestinal microbiota measured in A-T mice and decreased carcinogenesis. PLoS One 2016; 11: e0151190

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486 (7402): 207–214

    Google Scholar 

  73. 73.

    van der Meulen TA, Harmsen H, Bootsma H, Spijkervet F, Kroese F, Vissink A. The microbiome-systemic diseases connection. Oral Dis 2016; 22(8): 719–734

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Pabst O. Correlation, consequence, and functionality in microbiome-immune interplay. Immunol Rev 2017; 279(1): 4–7

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature 2011; 473: 174–180

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019; 7(1): 14

    CAS  Google Scholar 

  77. 77.

    Huggins C, Hodges CV. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol 2002; 167(2 Pt 2): 948–952

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Strobl FJ, Levine JE. Estrogen inhibits luteinizing hormone (LH), but not follicle-stimulating hormone secretion in hypophysectomized pituitary-grafted rats receiving pulsatile LH-releasing hormone infusions. Endocrinology 1988; 123(1): 622–630

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Geier R, Adler S, Rashid G, Klein A. The synthetic estrogen diethylstilbestrol (DES) inhibits the telomerase activity and gene expression of prostate cancer cells. Prostate 2010; 70(12): 1307–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Thelen P, Wuttke W, Jarry H, Grzmil M, Ringert RH. Inhibition of telomerase activity and secretion of prostate specific antigen by silibinin in prostate cancer cells. J Urol 2004; 171(5): 1934–1938

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe 2011; 10: 324–335

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Cavalieri E, Chakravarti D, Guttenplan J, Hart E, Ingle J, Jankowiak R, Muti P, Rogan E, Russo J, Santen R, Sutter T. Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta 2006; 1766(1): 63–78

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: physiological and clinical implications. Maturitas 2017; 103: 45–53

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Nelles JL, Hu WY, Prins GS. Estrogen action and prostate cancer. Expert Rev Endocrinol Metab 2011; 6: 437–451

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Gadelle D, Raibaud P, Sacquet E. β-glucuronidase activities of intestinal bacteria determined both in vitro and in vivo in gnotobiotic rats. Appl Environ Microbiol 1985; 49(3): 682–685

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Gloux K, Berteau O, Oumami H, Beguet F, Leclerc M, Dore J. A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc Natl Acad Sci USA 2011; 108:4539–4546

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Golombos DM, Ayangbesan A, O’Malley P, Lewicki P, Barlow L, Barbieri CE, Chan C, DuLong C, Abu-Ali G, Huttenhower C, Scherr DS. The role of gut microbiome in the pathogenesis of prostate cancer: a prospective, pilot study. Urology 2018; 111: 122–128

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 2002; 68(10): 5186–5190

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Cockburn DW, Orlovsky NI, Foley MH, Kwiatkowski KJ, Bahr CM, Maynard M, Demeler B, Koropatkin NM. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol Microbiol 2015; 95(2): 209–230

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. The role of butyrate on colonic function. Aliment Pharmacol Ther 2008; 27: 104–119

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Dorv J, Marteau P, Seksik P, Langella P. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 2008; 105(43): 16731–16736

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Kwa M, Plottel CS, Blaser MJ, Adams S. The intestinal microbiome and estrogen receptor-positive female breast cancer. J Natl Cancer Inst 2016; 22: 108

    Google Scholar 

  93. 93.

    Hullar MA, Burnett-Hartman AN, Lampe JW. Gut microbes, diet, and cancer. Cancer Treat Res 2014; 159: 377–399

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer 2013; 13(11): 800–812

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Price AJ, Travis RC, Appleby PN, Albanes D, Barricarte Gurrea A, Bjørge T, et al. Circulating folate and vitamin B12 and risk of prostate cancer: a collaborative analysis of individual participant data from six cohorts including 6875 cases and 8104 controls. Eur Urol 2016; 70: 941–951

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Wang R, Zheng Y, Huang JY, Zhang AQ, Zhou YH, Wang JN. Folate intake, serum folate levels, and prostate cancer risk: a metaanalysis of prospective studies. BMC Public Health 2014; 14: 1326

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Cavarretta I, Ferrarese R, Cazzaniga W, Saita D, Luciano R, Ceresola ER, Locatelli I, Visconti L, Lavorgna G, Briganti A, Nebuloni M, Doglioni C, Clementi M, Montorsi F, Canducci F, Salonia A. The microbiome of the prostate tumor microenvironment. Eur Urol 2017; 72(4): 625–631

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Liss MA, White JR, Goros M, Gelfond J, Leach R, Johnson-Pais T, Lai Z, Rourke E, Basler J, Ankerst D, Shah DP. Metabolic biosynthesis pathways identified from fecal microbiome associated with prostate cancer. Eur Urol 2018; 74(5): 575–582

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    James SJ, Basnakian AG, Miller BJ. In vitro folate deficiency induces deoxynucleotide pool imbalance, apoptosis, and mutagenesis in Chinese hamster ovary cells. Cancer Res 1994; 54(19): 5075–5080

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Wickramasinghe SN, Fida S. Misincorporation of uracil into the DNA of folate- and B12-deficient HL60 cells. Eur J Haematol 1993; 50(3): 127–132

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Duthie SJ, Hawdon A. DNA instability (strand breakage, uracil misincorporation, and defective repair) is increased by folic acid depletion in human lymphocytes in vitro. FASEB J 1998; 12(14): 1491–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzzi D, Rossi M. Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol 2007; 73(1): 179–185

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Rodriguez-Melendez R, Griffin JB, Zempleni J. Biotin supplementation increases expression of the cytochrome P450 1B1 gene in Jurkat cells, increasing the occurrence of single-stranded DNA breaks. J Nutr 2004; 134(9): 2222–2228

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol 2010; 192(19): 5002–5017

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Michaud DS, Izard J, Wilhelm-Benartzi CS, You DH, Grote VA, Tj0nneland A, Dahm CC, Overvad K, Jenab M, Fedirko V, Boutron-Ruault MC, Clavel-Chapelon F, Racine A, Kaaks R, Boeing H, Foerster J, Trichopoulou A, Lagiou P, Trichopoulos D, Sacerdote C, Sieri S, Palli D, Tumino R, Panico S, Siersema PD, Peeters PH, Lund E, Barricarte A, Huerta JM, Molina-Montes E, Dorronsoro M, Quirós JR, Duell EJ, Ye W, Sund M, Lindkvist B, Johansen D, Khaw KT, Wareham N, Travis RC, Vineis P, Bueno-de-Mesquita HB, Riboli E. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut 2013; 62(12): 1764–1770

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Beck JD, Offenbacher S. Systemic effects of periodontitis: epidemiology of periodontal disease and cardiovascular disease. J Periodontal 2005; 76(11S): 2089–2100

    Google Scholar 

  107. 107.

    Joshipura KJ, Rimm EB, Douglass CW, Trichopoulos D, Ascherio A, Willett WC. Poor oral health and coronary heart disease. J Dent Res 1996; 75(9): 1631–1636

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Offenbacher S, Jared HL, O’Reilly PG, Wells SR, Salvi GE, Lawrence HP, Socransky SS, Beck JD. Potential pathogenic mechanisms of periodontitis associated pregnancy complications. Ann Periodontal 1998; 3(1): 233–250

    CAS  Google Scholar 

  109. 109.

    Hujoel PP, Drangsholt M, Spiekerman C, Weiss NS. An exploration of the periodontitis-cancer association. Ann Epidemiol 2003; 13(5): 312–316

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Famili P, Cauley JA, Greenspan SL. The effect of androgen deprivation therapy on periodontal disease in men with prostate cancer. J Urol 2007; 177(3): 921–924

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Krieger JN, Nyberg L Jr, Nickel JC. NIH consensus definition and classification of prostatitis. JAMA 1999; 282(3): 236–237

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Offenbacher S. Periodontal diseases: pathogenesis. Ann Periodontal 1996; 1(1): 821–878

    CAS  Google Scholar 

  113. 113.

    Jang TL, Schaeffer AJ. The role of cytokines in prostatitis. World J Urol 2003; 21(2): 95–99

    CAS  PubMed  Google Scholar 

  114. 114.

    Van Dyke TE, van Winkelhoff AJ. Infection and inflammatory mechanisms. J Periodontol 2013; 84(4 Suppl): S1–S7

    PubMed  Google Scholar 

  115. 115.

    Joshi N, Bissada NF, Bodner D, Maclennan GT, Narendran S, Jurevic R, Skillicorn R. Association between periodontal disease and prostate-specific antigen levels in chronic prostatitis patients. J Periodontol 2010; 81(6): 864–869

    CAS  PubMed  Google Scholar 

  116. 116.

    Alwithanani N, Bissada NF, Joshi N. Periodontal treatment improves prostate symptoms and lowers serum PSA in men with high PSA and chronic periodontitis. Dentistry 2015; 5: 1–4

    Google Scholar 

  117. 117.

    Hasui Y, Marutsuka K, Asada Y, Ide H, Nishi S, Osada Y. Relationship between serum prostate specific antigen and histological prostatitis in patients with benign prostatic hyperplasia. Prostate 1994; 25(2): 91–96

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Kandirali E, Boran C, Serin E, Semercioz A, Metin A. Association of extent and aggressiveness of inflammation with serum PSA levels and PSA density in asymptomatic patients. Urology 2007; 70(4): 743–747

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Noack B, Genco RJ, Trevisan M, Grossi S, Zambon JJ, De Nardin E. Periodontal infections contribute to elevated systemic C-reactive protein level. J Periodontol 2001; 72(9): 1221–1227

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Estemalik J, Demko C, Bissada NF, Joshi N, Bodner D, Shankar E, Gupta S. Simultaneous detection of oral pathogens in subgingival plaque and prostatic fluid of men with periodontal and prostatic diseases. J Periodontol 2017; 88(9): 823–829

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Kadowaki T, Nakayama K, Yoshimura F, Okamoto K, Abe N, Yamamoto K. Arg-gingipain acts as a major processing enzyme for various cell surface proteins in Porphyromonas gingivalis. J Biol Chem 1998; 273(44): 29072–29076

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Saglie FR, Marfany A, Camargo P. Intragingival occurrence of Actinobacillus actinomycetemcomitans and Bacteroides gingivalis in active destructive periodontal lesions. J Periodontol 1988; 59(4): 259–265

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Abnet CC, Stolzenberg-Solomon R, Miller G, Ravel J, Hayes RB, Ahn J. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 2018; 67(1): 120–127

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Stathopoulou PG, Benakanakere MR, Galicia JC, Kinane DF. The host cytokine response to Porphyromonas gingivalis is modified by gingipains. Oral Microbiol Immunol 2009; 24(1): 11–17

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Duncan L, Yoshioka M, Chandad F, Grenier D. Loss of lipopolysaccharide receptor CD14 from the surface of human macrophage-like cells mediated by Porphyromonas gingivalis outer membrane vesicles. Microb Pathog 2004; 36(6): 319–325

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Whiteside SA, Razvi H, Dave S, Reid G, Burton JP. The microbiome of the urinary tract-a role beyond infection. Nat Rev Urol 2015; 12(2): 81–90

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Wolfe AJ, Toh E, Shibata N, Rong R, Kenton K, Fitzgerald M, et al. Evidence of uncultivated bacteria in the adult female bladder. J Clin Microbiol 2012; 50: 1376–1383

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Hilt EE, McKinley K, Pearce MM, Rosenfeld AB, Zilliox MJ, Mueller ER, et al. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J Clin Microbiol 2014; 52: 871–876

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Lewis DA, Brown R, Williams J, White P, Jacobson SK, Marchesi JR, et al. The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front Cell Infect Microbiol 2013; 3: 41

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Porter CM, Shrestha E, Peiffer LB, Sfanos KS. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis 2018; 21: 345–354

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Kirby RS, Lowe D, Bultitude MI, Shuttleworth KE. Intra-prostatic urinary reflux: an aetiological factor in abacterial prostatitis. Br J Urol 1982; 54(6): 729–731

    CAS  PubMed  Google Scholar 

  132. 132.

    Fouts DE, Pieper R, Szpakowski S, Pohl H, Knoblach S, Suh MJ, et al. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J Transl Med 2012; 28: 174

    Google Scholar 

  133. 133.

    Nelson DE, Van Der Pol B, Dong Q, Revanna KV, Fan B, Easwaran S, et al. Characteristic male urine microbiomes associate with asymptomatic sexually transmitted infection. PLoS One 2010; 5: e14116

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Dong Q, Nelson DE, Toh E, Diao L, Gao X, Fortenberry JD, et al. The microbial communities in male first catch urine are highly similar to those in paired urethral swab specimens. PLoS One 2011; 6: e19709

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Cohen RJ, Shannon BA, McNeal JE, Shannon T, Garrett KL. Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution? J Urol 2005; 173(6): 1969–1974

    PubMed  Google Scholar 

  136. 136.

    Sfanos KS, Sauvageot J, Fedor HL, Dick JD, De Marzo AM, Isaacs WB. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 2008; 68(3): 306–320

    CAS  PubMed  Google Scholar 

  137. 137.

    Mak TN, Yu SH, De Marzo AM, Brüggemann H, Sfanos KS. Multi-locus sequence typing (MLST) analysis of Propionibacterium acnes isolates from radical prostatectomy specimens. Prostate 2013; 73: 770–777

    CAS  PubMed  Google Scholar 

  138. 138.

    Sfanos KS, Isaacs WB. An evaluation of PCR primer sets used for detection of Propionibacterium acnes in prostate tissue samples. Prostate 2008; 68: 1492–1495

    CAS  PubMed  Google Scholar 

  139. 139.

    Davidsson S, Mölling P, Rider JR, Unemo M, Karlsson MG, Carlsson J, et al. Frequency and typing of Propionibacterium acnes in prostate tissue obtained from men with and without prostate cancer. Infect Agent Cancer 2016; 11: 26

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Brede CM, Shoskes DA. The etiology and management of acute prostatitis. Nat Rev Urol 2011; 8: 207–212

    CAS  PubMed  Google Scholar 

  141. 141.

    Sasaki M, Yamaura C, Ohara-Nemoto Y, Tajika S, Kodama Y, Ohya T, Harada R, Kimura S. Streptococcus anginosus infection in oral cancer and its infection route. Oral Dis 2005; 11(3): 151–156

    CAS  PubMed  Google Scholar 

  142. 142.

    Shiga K, Tateda M, Saijo S, Hori T, Sato I, Tateno H, Matsuura K, Takasaka T, Miyagi T. Presence of Streptococcus infection in extra-oropharyngeal head and neck squamous cell carcinoma and its implication in carcinogenesis. Oncol Rep 2001; 8(2): 245–248

    CAS  PubMed  Google Scholar 

  143. 143.

    Fricke WF, Maddox C, Song Y, Bromberg JS. Human microbiota characterization in the course of renal transplantation. Am J Transplant 2014; 14: 416–427

    CAS  PubMed  Google Scholar 

  144. 144.

    Siddiqui H, Lagesen K, Nederbragt AJ, Jeansson SL, Jakobsen KS. Alterations of microbiota in urine from women with interstitial cystitis. BMC Microbiol 2012; 12: 205

    PubMed  PubMed Central  Google Scholar 

  145. 145.

    Stapleton AE. Urinary tract infection pathogenesis: host factors. Infect Dis Clin North Am 2014; 28: 149–159

    PubMed  Google Scholar 

  146. 146.

    Ragnarsdóttir B, Lutay N, Grönberg-Hernandez J, Köves B, Svanborg C. Genetics of innate immunity and UTI susceptibility. Nat Rev Urol 2011; 8: 449–468

    PubMed  Google Scholar 

  147. 147.

    Gottschick C, Deng ZL, Vital M, Masur C, Abels C, Pieper DH, Wagner-Döbler I. The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment. Microbiome 2017; 5: 99

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Pearce MM, Hilt EE, Rosenfeld AB, Zilliox MJ, Thomas-White K, Fok C, et al. The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. MBio 2014; 5: e01283–14

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Nienhouse V, Gao X, Dong Q, Nelson DE, Toh E, McKinley K, et al. Interplay between bladder microbiota and urinary antimicrobial peptides: mechanisms for human urinary tract infection risk and symptom severity. PLoS One 2014; 9: e114185

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Siddiqui H, Nederbragt AJ, Lagesen K, Jeansson SL, Jakobsen KS. Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons. BMC Microbiol 2011; 11: 244

    CAS  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Micheli A, Ciampichini R, Oberaigner W, Ciccolallo L, de Vries E, Izarzugaza I, et al. The advantage of women in cancer survival: an analysis of EUROCARE-4 data. Eur J Cancer 2009; 45: 1017–1027

    CAS  PubMed  Google Scholar 

  152. 152.

    Sutcliffe S, Zenilman JM, Ghanem KG, Jadack RA, Sokoll LJ, Elliott DJ, et al. Sexually transmitted infections and prostatic inflammation/cell damage as measured by serum prostate specific antigen concentration. J Urol 2006; 175: 1937–1942

    PubMed  Google Scholar 

  153. 153.

    Huang WY, Hayes R, Pfeiffer R, Viscidi RP, Lee FK, Wang YF, Reding D, Whitby D, Papp JR, Rabkin CS. Sexually transmissible infections and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2008; 17(9): 2374–2381

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Shoskes DA, Altemus J, Polackwich AS, Tucky B, Wang H, Eng C. The urinary microbiome differs significantly between patients with chronic prostatitis/chronic pelvic pain syndrome and controls as well as between patients with different clinical phenotypes. Urology 2016; 92: 26–32

    PubMed  Google Scholar 

  155. 155.

    Yu H, Meng H, Zhou F, Ni X, Shen S, Das UN. Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia. Arch Med Sci 2015; 11(2): 385–394

    PubMed  PubMed Central  Google Scholar 

  156. 156.

    Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol 2011; 19: 349–359

    CAS  PubMed  Google Scholar 

  157. 157.

    Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 2015; 3: 207–215

    CAS  PubMed  Google Scholar 

  158. 158.

    Zitvogel L, Galluzzi L, Viaud S, Vétizou M, Daillère R, Merad M, Kroemer G. Cancer and the gut microbiota: an unexpected link. Sci Transl Med 2015; 7(271): 271ps1

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    Mandar R. Microbiota of male genital tract: impact on the health of man and his partner. Pharmacol Res 2013; 69: 32–41

    PubMed  Google Scholar 

  160. 160.

    Keay S, Zhang CO, Baldwin BR, Alexander RB. Polymerase chain reaction amplification of bacterial 16s rRNA genes in prostate biopsies from men without chronic prostatitis. Urology 1999; 53 (3): 487–491

    CAS  PubMed  Google Scholar 

  161. 161.

    Krieger JN, Riley DE, Vesella RL, Miner DC, Ross SO, Lange PH. Bacterial DNA sequences in prostate tissue from patients with prostate cancer and chronic prostatitis. J Urol 2000; 164(4): 1221–1228

    CAS  PubMed  Google Scholar 

  162. 162.

    Yow MA, Tabrizi SN, Severi G, Bolton DM, Pedersen J; Australian Prostate Cancer BioResource, Giles GG, Southey MC. Characterisation of microbial communities within aggressive prostate cancer tissues. Infect Agent Cancer 2017; 12(1): 4

    PubMed  PubMed Central  Google Scholar 

  163. 163.

    Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 2014; 12: 87

    PubMed  PubMed Central  Google Scholar 

  164. 164.

    Glassing A, Dowd SE, Galandiuk S, Davis B, Chiodini RJ. Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog 2016; 8(1): 24

    PubMed  PubMed Central  Google Scholar 

  165. 165.

    Alfano M, Canducci F, Nebuloni M, Clementi M, Montorsi F, Salonia A. The interplay of extracellular matrix and microbiome in urothelial bladder cancer. Nat Rev Urol 2016; 13(2): 77–90

    CAS  PubMed  Google Scholar 

  166. 166.

    Caini S, Gandini S, Dudas M, Bremer V, Severi E, Gherasim A. Sexually transmitted infections and prostate cancer risk: a systematic review and meta-analysis. Cancer Epidemiol 2014; 38: 329–338

    PubMed  Google Scholar 

  167. 167.

    Yoon BI, Kim S, Han DS, Ha US, Lee SJ, Kim HW, Han CH, Cho YH. Acute bacterial prostatitis: how to prevent and manage chronic infection? J Infect Chemother 2012; 18(4): 444–450

    PubMed  Google Scholar 

  168. 168.

    Fair WR, Parrish RF. Antibacterial substances in prostatic fluid. Prog Clin Biol Res 1981; 75A: 247–264

    CAS  PubMed  Google Scholar 

  169. 169.

    Hall SH, Hamil KG, French FS. Host defense proteins of the male reproductive tract. J Androl 2002; 23(5): 585–597

    CAS  PubMed  Google Scholar 

  170. 170.

    Alexeyev OA, Marklund I, Shannon B, Golovleva I, Olsson J, Andersson C, Eriksson I, Cohen R, Elgh F. Direct visualization of Propionibacterium acnes in prostate tissue by multicolor fluorescent in situ hybridization assay. J Clin Microbiol 2007; 45(11): 3721–3728

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Drott JB, Alexeyev O, Bergström P, Elgh F, Olsson J. Propionibacterium acnes infection induces upregulation of inflammatory genes and cytokine secretion in prostate epithelial cells. BMC Microbiol 2010; 10(1): 126–132

    PubMed  PubMed Central  Google Scholar 

  172. 172.

    Palayoor ST, Youmell MY, Calderwood SK, Coleman CN, Price BD. Constitutive activation of IκB kinase α and NF-κB in prostate cancer cells is inhibited by ibuprofen. Oncogene 1999; 18(51): 7389–7394

    CAS  PubMed  Google Scholar 

  173. 173.

    Mora LB, Buettner R, Seigne J, Diaz J, Ahmad N, Garcia R, Bowman T, Falcone R, Fairclough R, Cantor A, Muro-Cacho C, Livingston S, Karras J, Pow-Sang J, Jove R. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res 2002; 62(22): 6659–6666

    CAS  PubMed  Google Scholar 

  174. 174.

    Fassi Fehri L, Mak TN, Laube B, Brinkmann V, Ogilvie LA, Mollenkopf H, Lein M, Schmidt T, Meyer TF, Brüggemann H. Prevalence of Propionibacterium acnes in diseased prostates and its inflammatory and transforming activity on prostate epithelial cells. Int J Med Microbiol 2011; 301(1): 69–78

    CAS  PubMed  Google Scholar 

  175. 175.

    Ogino S, Nishihara R, VanderWeele TJ, Wang M, Nishi A, Lochhead P, et al. The role of molecular pathological epidemiology in the study ofneoplastic and non-neoplastic diseases in the era of precision medicine. Epidemiology 2016; 27(4): 602–611

    PubMed  PubMed Central  Google Scholar 

  176. 176.

    Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, et al. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol 2013; 26(4): 465–484

    CAS  PubMed  PubMed Central  Google Scholar 

  177. 177.

    Kashyap PC, Chia N, Nelson H, Segal E, Elinav E. Microbiome at the frontier of personalized medicine. Mayo Clin Proc 2017; 92 (12): 1855–1864

    PubMed  PubMed Central  Google Scholar 

  178. 178.

    Hamada T, Nowak JA, Milner DA Jr. Song M, Ogino S. Integration of microbiology, molecular pathology, and epidemiology: a new paradigm to explore the pathogenesis of microbiome-driven neoplasms. J Pathol 2019; 247(5): 615–628

    PubMed  PubMed Central  Google Scholar 

  179. 179.

    Ogino S, Nowak JA, Hamada T, Milner DA Jr, Nishihara R. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu Rev Pathol 2019; 14: 83–103

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Ogino S, Chan AT, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut 2011; 60: 397–411

    PubMed  PubMed Central  Google Scholar 

  181. 181.

    Hamada T, Keum N, Nishihara R, Ogino S. Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis. J Gastroenterol 2017; 52: 265–275

    PubMed  PubMed Central  Google Scholar 

  182. 182.

    Whitaker NJ, Glenn WK, Sahrudin A, Orde MM, Delprado W, Lawson JS. Human papillomavirus and Epstein Barr virus in prostate cancer: koilocytes indicate potential oncogenic influences of human papillomavirus in prostate cancer. Prostate 2013; 73(3): 236–241

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Nam YD, Kim HJ, Seo JG, Kang SW, Bae JW. Impact of pelvic radiotherapy on gut microbiota of gynecological cancer patients revealed by massive pyrosequencing. PLoS One 2013; 8(12): e82659

    PubMed  PubMed Central  Google Scholar 

  184. 184.

    Banerjee S, Alwine JC, Wei Z, Tian T, Shih N, Sperling C, et al. Microbiome signatures in prostate cancer. Carcinogenesis 2019; 40 (6): 749–764

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Zambrano A, Kalantari M, Simoneau A, Jensen JL, Villarreal LP. Detection of human polyomaviruses and papillomaviruses in prostatic tissue reveals the prostate as a habitat for multiple viral infections. Prostate 2002; 53(4): 263–276

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Blaheta RA, Weich E, Marian D, Bereiter-Hahn J, Jones J, Jonas D, Michaelis M, Doerr HW, Cinatl J Jr. Human cytomegalovirus infection alters PC3 prostate carcinoma cell adhesion to endothelial cells and extracellular matrix. Neoplasia 2006; 8(10): 807–816

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin 2017; 67(4): 326–344

    PubMed  PubMed Central  Google Scholar 

  188. 188.

    Amirian ES, Petrosino JF, Ajami NJ, Liu Y, Mims MP, Scheurer ME. Potential role of gastrointestinal microbiota composition in prostate cancer risk. Infect Agent Cancer 2013; 8(1): 42

    PubMed  PubMed Central  Google Scholar 

  189. 189.

    Haiser HJ, Turnbaugh PJ. Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res 2013; 69(1): 21–31

    CAS  PubMed  PubMed Central  Google Scholar 

  190. 190.

    Dutton RJ, Turnbaugh PJ. Taking a metagenomic view of human nutrition. Curr Opin Clin Nutr Metab Care 2012; 15(5): 448–454

    PubMed  PubMed Central  Google Scholar 

  191. 191.

    La Thangue NB, Kerr DJ. Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat Rev Clin Oncol 2011; 8 (10): 587–596

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192.

    Wong SH, Kwong TNY, Wu CY, Yu J. Clinical applications of gut microbiota in cancer biology. Semin Cancer Biol 2019; 55: 28–36

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Shetty Y, Prabhu P, Prabhakar B. Emerging vistas in theranostic medicine. Int J Pharm 2019; 558: 29–42

    CAS  PubMed  PubMed Central  Google Scholar 

  194. 194.

    Behrouzi A, Nafari AH, Siadat SD. The significance of microbiome in personalized medicine. Clin Transl Med 2019; 8(1): 16

    PubMed  PubMed Central  Google Scholar 

  195. 195.

    Alanee S, El-Zawahry A, Dynda D, Dabaja A, McVary K, Karr M, et al. A prospective study to examine the association of the urinary and fecal microbiota with prostate cancerdiagnosis after transrectal biopsy of the prostate using 16sRNA gene analysis. Prostate 2019; 79(1): 81–87

    CAS  PubMed  PubMed Central  Google Scholar 

  196. 196.

    Feng Y, Jaratlerdsiri W, Patrick SM, Lyons RJ, Haynes AM, Collins CC, et al. Metagenomic analysis reveals a rich bacterial content in high-risk prostate tumors from African men. Prostate 2019; 79(15): 1731–1738

    CAS  PubMed  PubMed Central  Google Scholar 

  197. 197.

    Feng Y, Ramnarine VR, Bell R, Volik S, Davicioni E, Hayes VM, et al. Metagenomic and metatranscriptomic analysis of human prostate microbiota from patients with prostate cancer. BMC Genomics 2019; 20(1): 146

    PubMed  PubMed Central  Google Scholar 

  198. 198.

    Ma X, Chi C, Fan L, Dong B, Shao X, Xie S, et al. The microbiome of prostate fluid is associated with prostate cancer. Front Microbiol 2019; 10: 1664

    PubMed  PubMed Central  Google Scholar 

  199. 199.

    Rea D, Coppola G, Palma G, Barbieri A, Luciano A, Del Prete P. Microbiota effects on cancer: from risks to therapies. Oncotarget 2018; 9(25): 17915–17927

    PubMed  PubMed Central  Google Scholar 

  200. 200.

    Wilson KM, Giovannucci EL, Mucci LA. Lifestyle and dietary factors in the prevention of lethal prostate cancer. Asian J Androl 2012; 14: 365–374

    CAS  PubMed  PubMed Central  Google Scholar 

  201. 201.

    Punnen S, Hardin J, Cheng I, Klein EA, Witte JS. Impact of meat consumption, preparation, and mutagens on aggressive prostate cancer. PLoS One 2011; 6: e27711

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202.

    Newmark HL, Heaney RP. Dairy products and prostate cancerrisk. Nutr Cancer 2010; 62: 297–299

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Richman EL, Kenfield SA, Stampfer MJ, Giovannucci EL, Chan JM. Egg, red meat, and poultry intake and risk of lethal prostate cancer in the prostate-specific antigen-era: incidence and survival. Cancer Prev Res (Phila) 2011; 4(12): 2110–2121

    CAS  Google Scholar 

  204. 204.

    Astorg P. Dietary N-6 and N-3 polyunsaturated fatty acids and prostate cancer risk: a review of epidemiological and experimental evidence. Cancer Causes Control 2004; 15: 367–386

    PubMed  PubMed Central  Google Scholar 

  205. 205.

    Joshi AD, Corral R, Catsburg C, Lewinger JP, Koo J, John EM, et al. Red meat and poultry, cooking practices, genetic susceptibility and risk of prostate cancer: results from a multiethnic case-control study. Carcinogenesis 2012; 33: 2108–2118

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206.

    Travis RC, Appleby PN, Siddiq A, Allen NE, Kaaks R, Canzian F, et al. Genetic variation in the lactase gene, dairy product intake and risk for prostate cancer in the European prospective investigation into cancer and nutrition. Int J Cancer 2013; 132(8): 1901–1910

    CAS  PubMed  PubMed Central  Google Scholar 

  207. 207.

    Amirian ES, Ittmann MM, Scheurer ME. Associations between arachidonic acid metabolism gene polymorphisms and prostate cancer risk. Prostate 2011; 71(13): 1382–1389

    CAS  PubMed  PubMed Central  Google Scholar 

  208. 208.

    Massari F, Mollica V, Di Nunno V, Gatto L, Santoni M, Scarpelli M, et al. The human microbiota and prostate cancer: friend or foe? Cancers (Basel) 2019; 11(4):459

    CAS  Google Scholar 

  209. 209.

    Kundu P, Blacher E, Elinav E, Pettersson S. Our gut microbiome: the evolving inner self. Cell 2017; 171(7): 1481–1493

    CAS  PubMed  PubMed Central  Google Scholar 

  210. 210.

    Blaser M. Antibiotic overuse: stop the killing of beneficial bacteria. Nature 2011; 476(7361): 393–394

    CAS  PubMed  PubMed Central  Google Scholar 

  211. 211.

    Boursi B, Mamtani R, Haynes K, Yang YX. Recurrent antibiotic exposure may promote cancer formation-another step in understanding the role of the human microbiota? Eur J Cancer 2015; 51 (17): 2655–2664

    CAS  PubMed  PubMed Central  Google Scholar 

  212. 212.

    Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care 2010; 33(10): 2277–2284

    PubMed  PubMed Central  Google Scholar 

  213. 213.

    Iebba V, Nicoletti M, Schippa S. Gut microbiota and the immune system: an intimate partnership in health and disease. Int J Immunopathol Pharmacol 2012; 25(4): 823–833

    CAS  PubMed  PubMed Central  Google Scholar 

  214. 214.

    Ridlon JM, Ikegawa S, Alves JM, Zhou B, Kobayashi A, Iida T, et al. Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. J Lipid Res 2013; 54(9): 2437–2449

    CAS  PubMed  PubMed Central  Google Scholar 

  215. 215.

    Bisanz JE, Enos MK, Mwanga JR, Changalucha J, Burton JP, Gloor GB, et al. Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in Tanzanian pregnant women and school children. MBio 2014; 5(5): e01580–1514

    CAS  PubMed  PubMed Central  Google Scholar 

  216. 216.

    Maleki Vareki S, Chanyi RM, Abdur-Rashid K, Brennan L, Burton JP. Moving on from Metchnikoff: thinking about microbiome therapeutics in cancer. Ecancermedicalscience 2018; 12: 867

    PubMed  PubMed Central  Google Scholar 

  217. 217.

    Namasivayam N. Chemoprevention in experimental animals. Ann NY Acad Sci 2011; 1215: 60–71

    CAS  PubMed  PubMed Central  Google Scholar 

  218. 218.

    Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med 2012; 10: 253

    CAS  PubMed  PubMed Central  Google Scholar 

  219. 219.

    Cavalieri E, Rogan E. The molecular etiology and prevention of estrogeninitiated cancers. Mol Aspects Med 2014; 36: 1–55

    CAS  PubMed  PubMed Central  Google Scholar 

  220. 220.

    Akaza H. Prostate cancer chemoprevention by soy isoflavones: role of intestinal bacteria as the “second human genome”. Cancer Sci 2012; 103(6): 969–975

    CAS  PubMed  PubMed Central  Google Scholar 

  221. 221.

    Tsuji H, Moriyama K, Nomoto K, Miyanaga N, Akaza H. Isolation and characterization of the equol-producing bacterium Slackia sp. Strain NATTS. Arch Microbiol 2010; 192(4): 279–287

    CAS  PubMed  PubMed Central  Google Scholar 

  222. 222.

    El-Demiry MI, Hargreave TB, Busuttil A, James K, Ritchie AW, Chisholm GD. Lymphocyte sub-populations in the male genital tract. Br J Urol 1985; 57(6): 769–774

    CAS  PubMed  PubMed Central  Google Scholar 

  223. 223.

    McClinton S, Miller ID, Eremin O. An immunohistochemical characterisation of the inflammatory cell infiltrate in benign and malignant prostatic disease. Br J Cancer 1990; 61(3): 400–403

    CAS  PubMed  PubMed Central  Google Scholar 

  224. 224.

    Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, Dai RM, Kiu H, Cardone M, Naik S, Patri AK, Wang E, Marincola FM, Frank KM, Belkaid Y, Trinchieri G, Goldszmid RS. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013; 342 (6161): 967–970

    CAS  PubMed  PubMed Central  Google Scholar 

  225. 225.

    Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013; 342: 971–976

    CAS  PubMed  PubMed Central  Google Scholar 

  226. 226.

    Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350(6264): 1084–1089

    CAS  PubMed  PubMed Central  Google Scholar 

  227. 227.

    Johnstone TC, Park GY, Lippard SJ. Understanding and improving platinum anticancer drugs-phenanthriplatin. Anticancer Res 2014; 34(1): 471–476

    CAS  PubMed  PubMed Central  Google Scholar 

  228. 228.

    Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragón L, Jacquelot N, Qu B, Ferrere G, Clémenson C, Mezquita L, Masip JR, Naltet C, Brosseau S, Kaderbhai C, Richard C, Rizvi H, Levenez F, Galleron N, Quinquis B, Pons N, Ryffel B, Minard-Colin V, Gonin P, Soria JC, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G, Zitvogel L. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018; 359(6371): 91–97

    CAS  PubMed  PubMed Central  Google Scholar 

  229. 229.

    Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, Cogdill AP, Zhao L, Hudgens CW, Hutchinson DS, Manzo T, Petaccia de Macedo M, Cotechini T, Kumar T, Chen WS, Reddy SM, Szczepaniak Sloane R, Galloway-Pena J, Jiang H, Chen PL, Shpall EJ, Rezvani K, Alousi AM, Chemaly RF, Shelburne S, Vence LM, Okhuysen PC, Jensen VB, Swennes AG, McAllister F, Marcelo Riquelme Sanchez E, Zhang Y, Le Chatelier E, Zitvogel L, Pons N, Austin-Breneman JL, Haydu LE, Burton EM, Gardner JM, Sirmans E, Hu J, Lazar AJ, Tsujikawa T, Diab A, Tawbi H, Glitza IC, Hwu WJ, Patel SP, Woodman SE, Amaria RN, Davies MA, Gershenwald JE, Hwu P, Lee JE, Zhang J, Coussens LM, Cooper ZA, Futreal PA, Daniel CR, Ajami NJ, Petrosino JF, Tetzlaff MT, Sharma P, Allison JP, Jenq RR, Wargo JA. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018; 359(6371): 97–103

    CAS  PubMed  PubMed Central  Google Scholar 

  230. 230.

    Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005; 25(21): 9543–9553

    CAS  PubMed  PubMed Central  Google Scholar 

  231. 231.

    Fife BT, Pauken KE, Eagar TN, Obu T, Wu J, Tang Q, Azuma M, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 2009; 10: 1185–1192

    CAS  PubMed  PubMed Central  Google Scholar 

  232. 232.

    Graff JN, Alumkal JJ, Drake CG, Thomas GV, Redmond WL, Farhad M, Cetnar JP, Ey FS, Bergan RC, Slottke R, Beer TM. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget 2016; 7(33): 52810–52817

    PubMed  PubMed Central  Google Scholar 

  233. 233.

    Kuczma MP, Ding ZC, Li T, Habtetsion T, Chen T, Hao Z, et al. The impact of antibiotic usage on the efficacy of chemoimmunotherapy is contingent on the source of tumor-reactive T cells. Oncotarget 2017; 8(67): 111931–111942

    PubMed  PubMed Central  Google Scholar 

  234. 234.

    Vande Voorde J, Sabuncuoglu S, Noppen S, Hofer A, Ranjbarian F, Fieuws S, Balzarini J, Liekens S. Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine. J Biol Chem 2014; 289(19): 13054–13065

    CAS  PubMed  PubMed Central  Google Scholar 

  235. 235.

    Ladoire S, Eymard JC, Zanetta S, Mignot G, Martin E, Kermarrec I, Mourey E, Michel F, Cormier L, Ghiringhelli F. Metronomic oral cyclophosphamide prednisolone chemotherapy is an effective treatment for metastatic hormone-refractory prostate cancer after docetaxel failure. Anticancer Res 2010; 30(10): 4317–4323

    CAS  PubMed  Google Scholar 

  236. 236.

    Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 2004; 4(6): 423–436

    CAS  PubMed  Google Scholar 

  237. 237.

    Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T-cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immun-other 2007; 56(5): 641–648

    CAS  Google Scholar 

  238. 238.

    Nicolini A, Mancini P, Ferrari P, Anselmi L, Tartarelli G, Bonazzi V, et al. Oral low-dose cyclophosphamide in metastatic hormone refractory prostate cancer (MHRPC). Biomed Pharmacother 2004; 58(8): 447–450

    CAS  PubMed  PubMed Central  Google Scholar 

  239. 239.

    Hellerstedt B, Pienta KJ, Redman BG, Esper P, Dunn R, Fardig J, et al. Phase II trial of oral cyclophosphamide, prednisone, and diethylstilbestrol for androgen-independent prostate carcinoma. Cancer 2003; 98(8): 1603–1610

    CAS  PubMed  PubMed Central  Google Scholar 

  240. 240.

    Bracarda S, Tonato M, Rosi P, De Angelis V, Mearini E, Cesaroni S, Fornetti P, Porena M. Oral estramustine and cyclophosphamide in patients with metastatic hormone refractory prostate carcinoma: a phase II study. Cancer 2000; 88(6): 1438–1444

    CAS  PubMed  Google Scholar 

  241. 241.

    Johnstone TC, Suntharalingam K, Lippard SJ. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev 2016; 116(5): 3436–3486

    CAS  PubMed  PubMed Central  Google Scholar 

  242. 242.

    Viaud S, Daillère R, Boneca IG, Lepage P, Langella P, Chamaillard M, Pittet MJ, Ghiringhelli F, Trinchieri G, Goldszmid R, Zitvogel L. Gut microbiome and anticancer immune response: really hot Sh*t! Cell Death Differ 2015; 22(2): 199–214

    CAS  PubMed  PubMed Central  Google Scholar 

  243. 243.

    Westman EL, Canova MJ, Radhi IJ, Koteva K, Kireeva I, Waglechner N, et al. Bacterial inactivation of the anticancer drug doxorubicin. Chem Biol 2012; 19(10): 1255–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  244. 244.

    Harada N, Hanaoka R, Horiuchi H, Kitakaze T, Mitani T, Inui H, Yamaji R. Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice. Sci Rep 2016; 6(1): 23001

    CAS  PubMed  PubMed Central  Google Scholar 

  245. 245.

    Fijlstra M, Ferdous M, Koning AM, Rings EH, Harmsen HJ, Tissing WJ. Substantial decreases in the number and diversity of microbiota during chemotherapy-induced gastrointestinal mucositis in a rat model. Support Care Cancer 2015; 23(6): 1513–1522

    PubMed  PubMed Central  Google Scholar 

  246. 246.

    Sfanos KS, Markowski MC, Peiffer LB, Ernst SE, White JR, Pienta KJ, et al. Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer Prostatic Dis 2018; 21(4): 539–548

    CAS  PubMed  PubMed Central  Google Scholar 

  247. 247.

    Bode HB, Zeggel B, Silakowski B, Wenzel SC, Reichenbach H, Müller R. Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol Microbiol 2003; 47: 471–481

    CAS  PubMed  PubMed Central  Google Scholar 

  248. 248.

    Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ, Gajewski TF. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018; 359(6371): 104–108

    CAS  PubMed  PubMed Central  Google Scholar 

  249. 249.

    Chitapanarux I, Chitapanarux T, Traisathit P, Kudumpee S, Tharavichitkul E, Lorvidhaya V. Randomized controlled trial of live Lactobacillus acidophilus plus Bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat Oncol 2010; 5(1): 31

    PubMed  PubMed Central  Google Scholar 

  250. 250.

    Seidel DV, Azcárate-Peril MA, Chapkin RS, Turner ND. Shaping functional gut microbiota using dietary bioactives to reduce colon cancer risk. Semin Cancer Biol 2017; 46: 191–204

    CAS  PubMed  PubMed Central  Google Scholar 

  251. 251.

    Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014; 7(1): 17–44

    PubMed  PubMed Central  Google Scholar 

  252. 252.

    Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Bérard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350(6264): 1079–1084

    PubMed  PubMed Central  Google Scholar 

  253. 253.

    Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003; 361: 512–519

    PubMed  Google Scholar 

  254. 254.

    Horinaka M, Yoshida T, Kishi A, Akatani K, Yasuda T, Kouhara J, et al. Lactobacillus strains induce TRAIL production and facilitate natural killer activity against cancer cells. FEBS Lett 2010; 584(3): 577–582

    CAS  PubMed  Google Scholar 

  255. 255.

    Sanders ME, Klaenhammer TR. The scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J Dairy Sci 2001; 84: 319–331

    CAS  PubMed  Google Scholar 

  256. 256.

    Montes RG, Bayless TM, Saavedra JM, Perman JA. Effect of milks inoculated with Lactobacillus acidophilus or a yogurt starter culture in lactosemaldigesting children. J Dairy Sci 1995; 78: 1657–1664

    CAS  PubMed  Google Scholar 

  257. 257.

    Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 2019; 8(3): 92

    CAS  PubMed Central  Google Scholar 

  258. 258.

    Wang H, Geier MS, Howarth GS. Prebiotics: a potential treatment strategy for the chemotherapy-damaged gut? Crit Rev Food Sci Nutr 2016; 56(6): 946–956

    CAS  PubMed  Google Scholar 

  259. 259.

    Sambi M, Bagheri L, Szewczuk MR. Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J Oncol 2019; 2019: 4508794

    PubMed  PubMed Central  Google Scholar 

  260. 260.

    Arora M, Weuve J, Fall K, Pedersen NL, Mucci LA. An exploration of shared genetic risk factors between periodontal disease and cancers: a prospective co-twin study. Am J Epidemiol 2010; 171(2): 253–259

    PubMed  Google Scholar 

  261. 261.

    Miyake M, Ohnishi K, Hori S, Nakano A, Nakano R, Yano H, et al. Mycoplasma genitalium infection and chronic inflammation in human prostate cancer: detection using prostatectomy and needle biopsy specimens. Cells 2019; 8(3): 212

    CAS  PubMed Central  Google Scholar 

  262. 262.

    Al-Marhoon MS, Ouhtit A, Al-Abri AO, Venkiteswaran KP, Al-Busaidi Q, Mathew J, et al. Molecular evidence of Helicobacter pylori infection in prostate tumors. Curr Urol 2015; 8(3): 138–143

    PubMed  PubMed Central  Google Scholar 

  263. 263.

    Alanee S, El-Zawahry A, Dynda D, McVary K, Karr M, Braundmeier-Fleming A. Prospective examination of the changes in the urinary microbiome induced by transrectal biopsy of the prostate using 16S rRNA gene analysis. Prostate Cancer Prostatic Dis 2019; 22(3): 446–452

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We give special thanks to all members of Uro-Oncology Research Center, Tehran University of Medical Sciences for helpful discussions and friendly support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Solmaz Ohadian Moghadam.

Additional information

Compliance with ethics guidelines

Solmaz Ohadian Moghadam and Seyed Ali Momeni declare that they have no conflict of interest. This manuscript is a review article and does not require approval by the institutional ethics committee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ohadian Moghadam, S., Momeni, S.A. Human microbiome and prostate cancer development: current insights into the prevention and treatment. Front. Med. (2020). https://doi.org/10.1007/s11684-019-0731-7

Download citation

Keywords

  • microbiome
  • prostate cancer
  • prevention
  • treatment
  • molecular pathological epidemiology (MPE)
  • biomarker