Skip to main content
Log in

Xiao Ke Qing improves glycometabolism and ameliorates insulin resistance by regulating the PI3K/Akt pathway in KKAy mice

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Xiao Ke Qing (XKQ) granule has been clinically used to treat type 2 diabetes mellitus (T2DM) for 10 years in Chinese traditional medication. However, its mechanisms against hyperglycemia remain poorly understood. This study aims to investigate XKQ mechanisms on diabetes and diabetic liver disease by using the KKAy mice model. Our results indicate that XKQ can significantly reduce food and water intake. XKQ treatment also remarkably decreases both the fasting blood glucose and blood glucose in the oral glucose tolerance test. Additionally, XKQ can significantly decrease the serum alanine aminotransferase level and liver index and can alleviate the fat degeneration in liver tissues. Moreover, XKQ can ameliorate insulin resistance and upregulate the expression of IRS-1, PI3K (p85), p-Akt, and GLUT4 in the skeletal muscle of KKAy mice. XKQ is an effective drug for T2DM by ameliorating insulin resistance and regulating the PI3K/Akt signaling pathway in the skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414(6865): 782–787

    Article  CAS  PubMed  Google Scholar 

  2. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33(Suppl 1): S62–S69

  3. Yabe D, Seino Y, Fukushima M, Seino S. β cell dysfunction versus insulin resistance in the pathogenesis of type 2 diabetes in East Asians. Curr Diab Rep 2015; 15(6): 602

    Article  CAS  PubMed  Google Scholar 

  4. Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 2000; 106(2): 165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brunetti A, Chiefari E, Foti D. Recent advances in the molecular genetics of type 2 diabetes mellitus. World J Diabetes 2014; 5(2): 128–140

    Article  PubMed  PubMed Central  Google Scholar 

  6. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009; 32(Suppl 2): S157–S163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, DeFronzo RA, Kahn CR, Mandarino LJ. Insulin resistance differentially affects the PI 3-kinase-and MAP kinasemediated signaling in human muscle. J Clin Invest 2000; 105(3): 311–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brachmann SM, Ueki K, Engelman JA, Kahn RC, Cantley LC. Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice. Mol Cell Biol 2005; 25(5): 1596–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kanai F, Ito K, Todaka M, Hayashi H, Kamohara S, Ishii K, Okada T, Hazeki O, Ui M, Ebina Y. Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI3-kinase. Biochem Biophys Res Commun 1993; 195(2): 762–768

    Article  CAS  PubMed  Google Scholar 

  10. Meex RCR, Watt MJ. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat Rev Endocrinol 2017; 13(9): 509–520

    Article  CAS  PubMed  Google Scholar 

  11. Lin P, Zhou H. Relationship between insulin resistance, dyslipidemia and fatty liver in non-insulin-dependent diabetes mellitus. Guangzhou Med J (Guangzhou Yi Yao) 2001; 32(l): 41–42 (in Chinese)

    Google Scholar 

  12. Yun X, Yao D, Han T. Clinical observation of Xiao ke Qing in treating 42 cases of type 2 diabetic patients. Gansu J Tradit Chin Med (Gansu Zhong Yi) 2002; 15(4): 37–38 (in Chinese)

    Google Scholar 

  13. Li Y. Clinical observation of Xiaokeqing treating type 2 diabetes mellitus with relieving blood stasis. Dissertation. Liaoning: Liaoning University of Traditional Chinese Medicine, 2017 (in Chinese)

    Google Scholar 

  14. Chen XM, Li NI, Jin HL, Sun WL. Studies of hypoglycemic effects of xiaokeqing. Chin Hosp Pharm J (Zhongguo Yi Yuan Yao Xue Za Zhi) 2005; 25(2): 126–128 (in Chinese)

    CAS  Google Scholar 

  15. Qiu ZJ, Shi RS, Zhu XX, Chen Z. Experimental study on treatment of diabetes with Xiaokeqing soft extract. J Nanjing Univ Tradit Chin Med (Nanjing Zhong Yi Yao Da Xue Xue Bao) 2001; 17(3): 170–172 (in Chinese)

    Google Scholar 

  16. Wang LQ, Wang X, Tong L, Li XW, Liu WY, Zhou SP, Sun H. Establishment of UPLC-PDA-ELSD fingerprints of Xiaokeqing Granules and determination of its five main constituents. Chin Tradit Herbal Drugs (Zhong Cao Yao) 2013; 44(24): 3482–3488 (in Chinese)

    CAS  Google Scholar 

  17. Sellamuthu PS, Arulselvan P, Fakurazi S, Kandasamy M. Beneficial effects of mangiferin isolated from Salacia chinensis on biochemical and hematological parameters in rats with streptozotocin-induced diabetes. Pak J Pharm Sci 2014; 27(1): 161–167

    CAS  PubMed  Google Scholar 

  18. Lim J, Liu Z, Apontes P, Feng D, Pessin JE, Sauve AA, Angeletti RH, Chi Y. Dual mode action of mangiferin in mouse liver under high fat diet. PLoS One 2014; 9(3): e90137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Na L, Zhang Q, Jiang S, Du S, Zhang W, Li Y, Sun C, Niu Y. Mangiferin supplementation improves serum lipid profiles in overweight patients with hyperlipidemia: a double-blind randomized controlled trial. Sci Rep 2015; 5(1): 10344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li CM, Gao YL, Li M, Han B, Liu ZF. Effects of timosaponins on blood glucose level in mice. Pharm Clin Chin Materia Medica (Zhongguo Yao Li Yu Lin Chuang) 2005;21 (4):22–23 (in Chinese)

    CAS  Google Scholar 

  21. Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 2008; 57(5): 712–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006; 55(8): 2256–2264

    Article  CAS  PubMed  Google Scholar 

  23. Yin J, Gao Z, Liu D, Liu Z, Ye J. Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab 2008; 294(1): E148–E156

    Article  CAS  PubMed  Google Scholar 

  24. Yi P, Lu FE, Xu LJ, Chen G, Dong H,Wang KF. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKβ. World J Gastroenterol 2008; 14(6): 876–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen Y, Li Y, Wang Y, Wen Y, Sun C. Berberine improves freefatty-acid-induced insulin resistance in L6 myotubes through inhibiting peroxisome proliferator-activated receptor ? and fatty acid transferase expressions. Metabolism 2009; 58(12): 1694–1702

    Article  CAS  PubMed  Google Scholar 

  26. Leng SH, Lu FE, Xu LJ. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol Sin 2004; 25(4): 496–502

    CAS  PubMed  Google Scholar 

  27. Kong WJ, Zhang H, Song DQ, Xue R, Zhao W, Wei J, Wang YM, Shan N, Zhou ZX, Yang P, You XF, Li ZR, Si SY, Zhao LX, Pan HN, Jiang JD. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression. Metabolism 2009; 58(1): 109–119

    Article  CAS  PubMed  Google Scholar 

  28. Chen G, Lu FE, Wang ZS, Yi P, Wang KF, Zou X. Correlation between the amelioration of insulin resistance and protein expression of PI3K and GLUT4 in type 2 diabetic rats treated with berberine. Chin Pharmacol Bull (Zhongguo Yao Li Xue Tong Bao) 2008; 24(8): 1007–1010 (in Chinese)

    CAS  Google Scholar 

  29. Chen W, Li S, Jing X, Jia H, Wan Y, Che R. Research progress in animal models of type 2 diabetes KKAy mice. J Clin Med (Lin Chuang Yi Yao Wen Xian Za Zhi ) 2017; 4(54): 10681–10682 (in Chinese)

    Google Scholar 

  30. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002; 296(5573): 1655–1657

    Article  CAS  PubMed  Google Scholar 

  31. Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996; 271(49): 31372–31378

    Article  CAS  PubMed  Google Scholar 

  32. Gandhi GR, Stalin A, Balakrishna K, Ignacimuthu S, Paulraj MG, Vishal R. Insulin sensitization via partial agonism of PPARg and glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway by embelin in type 2 diabetic rats. Biochim Biophys Acta 2013; 1830(1): 2243–2255

    Article  CAS  PubMed  Google Scholar 

  33. Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 2000; 106(2): 165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chi YJ, Jing LI, Guan YF, Yang JC. PI3K/Akt signaling axis in regulation of glucose homeostasis. Chin J Biochem Mol Biol (Zhongguo Sheng Wu Hua Xue Yu Fen Zi Sheng Wu Xue Bao) 2010; 26(10): 879–885 (in Chinese)

    CAS  Google Scholar 

  35. Tolman KG, Fonseca V, Tan MH, Dalpiaz A. Narrative review: hepatobiliary disease in type 2 diabetes mellitus. Ann Intern Med 2004; 141(12): 946–956

    Article  PubMed  Google Scholar 

  36. Targher G, Bertolini L, Rodella S, Tessari R, Zenari L, Lippi G, Arcaro G. Nonalcoholic fatty liver disease is independently associated with an increased incidence of cardiovascular events in type 2 diabetic patients. Diabetes Care 2007; 30(8): 2119–2121

    Article  CAS  PubMed  Google Scholar 

  37. Zhu X, Bian H, Gao X. The potential mechanisms of berberine in the treatment of nonalcoholic fatty liver disease. Molecules 2016; 21 (10): 1336

    Article  CAS  PubMed Central  Google Scholar 

  38. Galbo T, Shulman GI. Lipid-induced hepatic insulin resistance. Aging (Albany NY) 2013; 5(8): 582–583

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Special Project of Science and Technology for Innovation Drugs of China (No. 2013zx09402202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, X., Wang, G. et al. Xiao Ke Qing improves glycometabolism and ameliorates insulin resistance by regulating the PI3K/Akt pathway in KKAy mice. Front. Med. 12, 688–696 (2018). https://doi.org/10.1007/s11684-018-0662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-018-0662-8

Keywords

Navigation