Skip to main content
Log in

γδ T cells in liver diseases

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

γδ T cells display unique developmental, distributional, and functional patterns and can rapidly respond to various insults and contribute to diverse diseases. Different subtypes of γδ T cells are produced in the thymus prior to their migration to peripheral tissues. γδ T cells are enriched in the liver and exhibit liver-specific features. Accumulating evidence reveals that γδ T cells play important roles in liver infection, non-alcoholic fatty liver disease, autoimmune hepatitis, liver fibrosis and cirrhosis, and liver cancer and regeneration. In this study, we review the properties of hepatic γδ T cells and summarize the roles of γδ T cells in liver diseases. We believe that determining the properties and functions of γδ T cells in liver diseases enhances our understanding of the pathogenesis of liver diseases and is useful for the design of novel γδ T cell-based therapeutic regimens for liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Godfrey DI, Kennedy J, Suda T, Zlotnik A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3–CD4–CD8–triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol 1993; 150(10): 4244–4252

    PubMed  CAS  Google Scholar 

  2. Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol 2002; 2(5): 309–322

    Article  PubMed  CAS  Google Scholar 

  3. Ciofani M, Knowles GC, Wiest DL, von Boehmer H, Zúñiga-Pflücker JC. Stage-specific and differential notch dependency at the alphabeta and γδ T lineage bifurcation. Immunity 2006; 25(1): 105–116

    Article  PubMed  CAS  Google Scholar 

  4. Hoh A, Dewerth A, Vogt F, Wenz J, Baeuerle PA, Warmann SW, Fuchs J, Armeanu-Ebinger S. The activity of γδ T cells against paediatric liver tumour cells and spheroids in cell culture. Liver Int 2013; 33(1):127–136

    Article  PubMed  CAS  Google Scholar 

  5. Haas JD, González FH, Schmitz S, Chennupati V, Föhse L, Kremmer E, Förster R, Prinz I. CCR6 and NK1.1 distinguish between IL-17A and IFN-γ-producing γδ effector T cells. Eur J Immunol 2009; 39(12): 3488–3497

    Article  PubMed  CAS  Google Scholar 

  6. Muñoz-Ruiz M, Sumaria N, Pennington DJ, Silva-Santos B. Thymic determinants of γδ T cell differentiation. Trends Immunol 2017; 38(5): 336–344

    Article  PubMed  CAS  Google Scholar 

  7. Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 1998; 279(5357): 1737–1740

    Article  PubMed  CAS  Google Scholar 

  8. Fay NS, Larson EC, Jameson JM. Chronic inflammation and γδ T cells. Front Immunol 2016; 7: 210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Vantourout P, Hayday A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat Rev Immunol 2013; 13(2): 88–100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Rajoriya N, Fergusson JR, Leithead JA, Klenerman P. γδ Tlymphocytes in hepatitis C and chronic liver disease. Front Immunol 2014; 5: 400

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Wang X, Sun R, Wei H, Tian Z. High-mobility group box 1 (HMGB1)-Toll-like receptor (TLR)4-interleukin (IL)-23-IL-17A axis in drug-induced damage-associated lethal hepatitis: interaction of γδ T cells with macrophages. Hepatology 2013; 57(1): 373–384

    Article  PubMed  CAS  Google Scholar 

  12. Protzer U, Maini MK, Knolle PA. Living in the liver: hepatic infections. Nat Rev Immunol 2012; 12(3): 201–213

    Article  PubMed  CAS  Google Scholar 

  13. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 2014; 14(3): 181–194

    Article  PubMed  CAS  Google Scholar 

  14. Robinson MW, Harmon C, O’Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 2016; 13 (3): 267–276

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Shuai Z, Leung MW, He X, Zhang W, Yang G, Leung PS, Eric Gershwin M. Adaptive immunity in the liver. Cell Mol Immunol 2016; 13(3): 354–368

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Horst AK, Neumann K, Diehl L, Tiegs G. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 2016; 13(3): 277–292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Crispe IN. Immune tolerance in liver disease. Hepatology 2014; 60 (6): 2109–2117

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Gao B, Jeong WI, Tian Z. Liver: an organ with predominant innate immunity. Hepatology 2008; 47(2): 729–736

    Article  PubMed  CAS  Google Scholar 

  19. Bandyopadhyay K, Marrero I, Kumar V. NKT cell subsets as key participants in liver physiology and pathology. Cell Mol Immunol 2016; 13(3): 337–346

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Peng H, Wisse E, Tian Z. Liver natural killer cells: subsets and roles in liver immunity. Cell Mol Immunol 2016; 13(3): 328–336

    Article  PubMed  CAS  Google Scholar 

  21. Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol 2016; 13(3): 316–327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Zhou Z, Xu MJ, Gao B. Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol 2016; 13(3): 301–315

    Article  PubMed  CAS  Google Scholar 

  23. Bonneville M, O’Brien RL, Born WK. γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10(7): 467–478

    Article  PubMed  CAS  Google Scholar 

  24. Rao R, Graffeo CS, Gulati R, Jamal M, Narayan S, Zambirinis CP, Barilla R, Deutsch M, Greco SH, Ochi A, Tomkötter L, Blobstein R, Avanzi A, Tippens DM, Gelbstein Y, Van Heerden E, Miller G. Interleukin 17-producing γδ. T cells promote hepatic regeneration in mice. Gastroenterology 2014; 147(2):473–84.e2

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Li F, Hao X, Chen Y, Bai L, Gao X, Lian Z, Wei H, Sun R, Tian Z. The microbiota maintain homeostasis of liver-resident γδT-17 cells in a lipid antigen/CD1d-dependent manner. Nat Commun 2017; 7: 13839

    Article  PubMed  CAS  Google Scholar 

  26. Liaw YF, Chu CM. Hepatitis B virus infection. Lancet 2009; 373 (9663): 582–592

    Article  PubMed  CAS  Google Scholar 

  27. Chyuan IT, Tsai HF, Tzeng HT, Sung CC, Wu CS, Chen PJ, Hsu PN. Tumor necrosis factor-α blockage therapy impairs hepatitis B viral clearance and enhances T-cell exhaustion in a mouse model. Cell Mol Immunol 2015; 12(3): 317–325

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Chen M, Zhang D, Zhen W, Shi Q, Liu Y, Ling N, Peng M, Tang K, Hu P, Hu H, Ren H. Characteristics of circulating T cell receptor γδ T cells from individuals chronically infected with hepatitis B virus (HBV): an association between V(δ)2 subtype and chronic HBV infection. J Infect Dis 2008; 198(11): 1643–1650

    Article  PubMed  Google Scholar 

  29. Chen M, Hu P, Ling N, Peng H, Lei Y, Hu H, Zhang D, Ren H. Enhanced functions of peripheral γδ T cells in chronic hepatitis B infection during interferon α treatment in vivo and in vitro. PLoS One 2015; 10(3): e0120086

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Chen M, Hu P, Peng H, Zeng W, Shi X, Lei Y, Hu H, Zhang D, Ren H. Enhanced peripheral γδ T cells cytotoxicity potential in patients with HBV-associated acute-on-chronic liver failure might contribute to the disease progression. J Clin Immunol 2012; 32(4): 877–885

    Article  PubMed  CAS  Google Scholar 

  31. Kong X, Sun R, Chen Y, Wei H, Tian Z. γδ T cells drive myeloidderived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol 2014; 193 (4): 1645–1653

    Article  PubMed  CAS  Google Scholar 

  32. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005; 5(3): 215–229

    Article  PubMed  CAS  Google Scholar 

  33. Yin W, Tong S, Zhang Q, Shao J, Liu Q, Peng H, Hu H, Peng M, Hu P, Ren H, Tian Z, Zhang D. Functional dichotomy of Vd2 γδ T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-g production. Sci Rep 2016; 6(1): 26296

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Tseng CT, Miskovsky E, Houghton M, Klimpel GR. Characterization of liver T-cell receptor γδ T cells obtained from individuals chronically infected with hepatitis C virus (HCV): evidence for these T cells playing a role in the liver pathology associated with HCV infections. Hepatology 2001; 33(5): 1312–1320

    Article  PubMed  CAS  Google Scholar 

  35. Agrati C, Alonzi T, De Santis R, Castilletti C, Abbate I, Capobianchi MR, D’Offizi G, Siepi F, Fimia GM, Tripodi M, Poccia F. Activation of Vγ9Vδ2T cells by non-peptidic antigens induces the inhibition of subgenomic HCV replication. Int Immunol 2006; 18(1): 11–18

    Article  PubMed  CAS  Google Scholar 

  36. Sardinha LR, Elias RM, Mosca T, Bastos KR, Marinho CR, D’Império Lima MR, Alvarez JM. Contribution of NK, NK T, γδ T, and αβ T cells to the γ interferon response required for liver protection against Trypanosoma cruzi. Infect Immun 2006; 74(4): 2031–2042

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Tramonti D, Rhodes K, Martin N, Dalton JE, Andrew E, Carding SR. γδ T cell-mediated regulation of chemokine producing macrophages during Listeria monocytogenes infection-induced inflammation. J Pathol 2008; 216(2): 262–270

    Article  PubMed  CAS  Google Scholar 

  38. Chen D, Luo X, Xie H, Gao Z, Fang H, Huang J. Characteristics of IL-17 induction by Schistosoma japonicum infection in C57BL/6 mouse liver. Immunology 2013; 139(4): 523–532

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA 2015; 313(22): 2263–2273

    Article  PubMed  CAS  Google Scholar 

  40. Harley IT, Stankiewicz TE, Giles DA, Softic S, Flick LM, Cappelletti M, Sheridan R, Xanthakos SA, Steinbrecher KA, Sartor RB, Kohli R, Karp CL, Divanovic S. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology 2014; 59(5): 1830–1839

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Xu R, Tao A, Zhang S, Zhang M. Neutralization of interleukin-17 attenuates high fat diet-induced non-alcoholic fatty liver disease in mice. Acta Biochim Biophys Sin (Shanghai) 2013; 45(9): 726–733

    Article  CAS  Google Scholar 

  42. Aizawa Y, Hokari A. Autoimmune hepatitis: current challenges and future prospects. Clin Exp Gastroenterol 2017; 10: 9–18

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Carey EJ, Ali AH, Lindor KD. Primary biliary cirrhosis. Lancet 2015; 386(10003): 1565–1575

    Article  PubMed  CAS  Google Scholar 

  44. Singh S, Talwalkar JA. Primary sclerosing cholangitis: diagnosis, prognosis, and management. Clin Gastroenterol Hepatol 2013;11 (8):898–907

    Article  PubMed  PubMed Central  Google Scholar 

  45. Martins EB, Graham AK, Chapman RW, Fleming KA. Elevation of γδ T lymphocytes in peripheral blood and livers of patients with primary sclerosing cholangitis and other autoimmune liver diseases. Hepatology 1996; 23(5): 988–993

    PubMed  CAS  Google Scholar 

  46. Hua F, Wang L, Rong X, Hu Y, Zhang JM, He W, Zhang FC. Elevation of Vd1T cells in peripheral blood and livers of patients with primary biliary cholangitis. Clin Exp Immunol 2016; 186(3): 347–355

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Wen L, Peakman M, Mieli-Vergani G, Vergani D. Elevation of activated γδ T cell receptor bearing T lymphocytes in patients with autoimmune chronic liver disease. Clin Exp Immunol 1992; 89(1): 78–82

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Ferri S, Longhi MS, De Molo C, Lalanne C, Muratori P, Granito A, Hussain MJ, Ma Y, Lenzi M, Mieli-Vergani G, Bianchi FB, Vergani D, Muratori L. A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology 2010; 52(3): 999–1007

    Article  PubMed  CAS  Google Scholar 

  49. Nishio K, Miyagi T, Tatsumi T, Mukai K, Yokoyama Y, Yoshioka T, Sakamori R, Hikita H, Kodama T, Shimizu S, Shigekawa M, Nawa T, Yoshihara H, Hiramatsu N, Yamanaka H, Seino K, Takehara T. Invariant natural killer T cell deficiency leads to the development of spontaneous liver inflammation dependent on γδ T cells in mice. J Gastroenterol 2015; 50(11): 1124–1133

    Article  PubMed  CAS  Google Scholar 

  50. Zhang H, Bernuzzi F, Lleo A, Ma X, Invernizzi P. Therapeutic potential of IL-17-mediated signaling pathway in autoimmune liver diseases. Mediators Inflamm 2015; 2015: 436450

    PubMed  PubMed Central  Google Scholar 

  51. Ujiie H, Shevach EM. γδ T cells protect the liver and lungs of mice from autoimmunity induced by scurfy lymphocytes. J Immunol 2016; 196(4): 1517–1528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Zhao N, Hao J, Ni Y, Luo W, Liang R, Cao G, Zhao Y, Wang P, Zhao L, Tian Z, Flavell R, Hong Z, Han J, Yao Z, Wu Z, Yin Z. Vg4 γδ T cell-derived IL-17A negatively regulates NKT cell function in Con A-induced fulminant hepatitis. J Immunol 2011; 187(10): 5007–5014

    Article  PubMed  CAS  Google Scholar 

  53. Hammerich L, Bangen JM, Govaere O, Zimmermann HW, Gassler N, Huss S, Liedtke C, Prinz I, Lira SA, Luedde T, Roskams T, Trautwein C, Heymann F, Tacke F. Chemokine receptor CCR6-dependent accumulation of γδ T cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology 2014; 59(2): 630–642

    Article  PubMed  CAS  Google Scholar 

  54. Seo W, Eun HS, Kim SY, Yi HS, Lee YS, Park SH, Jang MJ, Jo E, Kim SC, Han YM, Park KG, Jeong WI. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by γδ T cells in liver fibrosis. Hepatology 2016; 64(2): 616–631

    Article  PubMed  CAS  Google Scholar 

  55. Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, Cong M, Iwaisako K, Liu X, Zhang M, Österreicher CH, Stickel F, Ley K, Brenner DA, Kisseleva T. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 2012; 143(3):765–776.e3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Tan Z, Qian X, Jiang R, Liu Q, Wang Y, Chen C, Wang X, Ryffel B, Sun B. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol 2013; 191 (4): 1835–1844

    Article  PubMed  CAS  Google Scholar 

  57. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA Cancer J Clin 2016; 66(2): 115–132

    Article  PubMed  Google Scholar 

  58. Yi Y, He HW, Wang JX, Cai XY, Li YW, Zhou J, Cheng YF, Jin JJ, Fan J, Qiu SJ. The functional impairment of HCC-infiltrating γδ T cells, partially mediated by regulatory T cells in a TGFβ-and IL-10-dependent manner. J Hepatol 2013; 58(5): 977–983

    Article  PubMed  CAS  Google Scholar 

  59. Cai XY, Wang JX, Yi Y, He HW, Ni XC, Zhou J, Cheng YF, Jin JJ, Fan J, Qiu SJ. Low counts of γδ T cells in peritumoral liver tissue are related to more frequent recurrence in patients with hepatocellular carcinoma after curative resection. Asian Pac J Cancer Prev 2014; 15(2): 775–780

    Article  PubMed  Google Scholar 

  60. Ma S, Cheng Q, Cai Y, Gong H, Wu Y, Yu X, Shi L, Wu D, Dong C, Liu H. IL-17A produced by γδ T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res 2014; 74(7): 1969–1982

    Article  PubMed  CAS  Google Scholar 

  61. Zhang BN, Watanabe S, Kohyama M, Saijo K, Kusakabe M, Ohno T. Tumor formation suppressed in γδ T knock-out mice. Cancer Lett 2000; 153(1-2): 63–66

    Article  PubMed  CAS  Google Scholar 

  62. Silva-Santos B, Serre K, Norell H. γδ T cells in cancer. Nat Rev Immunol 2015; 15(11): 683–691

    Article  PubMed  CAS  Google Scholar 

  63. Wu D, Wu P, Qiu F, Wei Q, Huang J. Human γδ T-cell subsets and their involvement in tumor immunity. Cell Mol Immunol 2017; 14 (3): 245–253

    Article  PubMed  CAS  Google Scholar 

  64. Toutirais O, Cabillic F, Le Friec G, Salot S, Loyer P, Le Gallo M, Desille M, de La Pintière CT, Daniel P, Bouet F, Catros V. DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vg9Vd2T cells. Eur J Immunol 2009; 39(5): 1361–1368

    Article  PubMed  CAS  Google Scholar 

  65. Sugai S, Yoshikawa T, Iwama T, Tsuchiya N, Ueda N, Fujinami N, Shimomura M, Zhang R, Kaneko S, Uemura Y, Nakatsura T. Hepatocellular carcinoma cell sensitivity to Vg9Vd2T lymphocytemediated killing is increased by zoledronate. Int J Oncol 2016; 48 (5): 1794–1804

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Forbes SJ, Newsome PN. Liver regeneration — mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol 2016; 13(8): 473–485

    Article  PubMed  Google Scholar 

  67. Furuya S, Kono H, Hara M, Hirayama K, Tsuchiya M, Fujii H. Interleukin-17A plays a pivotal role after partial hepatectomy in mice. J Surg Res 2013; 184(2): 838–846

    Article  PubMed  CAS  Google Scholar 

  68. Wu X, Sun R, Chen Y, Zheng X, Bai L, Lian Z, Wei H, Tian Z. Oral ampicillin inhibits liver regeneration by breaking hepatic innate immune tolerance normally maintained by gut commensal bacteria. Hepatology 2015; 62(1): 253–264

    Article  PubMed  CAS  Google Scholar 

  69. Wu YL, Ding YP, Tanaka Y, Shen LW, Wei CH, Minato N, Zhang W. γδ T cells and their potential for immunotherapy. Int J Biol Sci 2014; 10(2): 119–135

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Legut M, Cole DK, Sewell AK. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy. Cell Mol Immunol 2015; 12(6): 656–668

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Anhui Natural Science Foundation (No. 1708085QH183), Natural Science Foundation of China (Nos. 81302863, 31390433, and 91542000), and the Ministry of Science and Technology of China (973 Program, No. 2013CB944902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Tian, Z. γδ T cells in liver diseases. Front. Med. 12, 262–268 (2018). https://doi.org/10.1007/s11684-017-0584-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-017-0584-x

Keywords

Navigation