Rdh13 deficiency weakens carbon tetrachloride-induced liver injury by regulating Spot14 and Cyp2e1 expression levels

  • Xiaofang Cui
  • Benting Ma
  • Yan Wang
  • Yan Chen
  • Chunling Shen
  • Ying Kuang
  • Jian Fei
  • Lungen Lu
  • Zhugang Wang
Research Article

Abstract

Mitochondrion-localized retinol dehydrogenase 13 (Rdh13) is a short-chain dehydrogenase/reductase involved in vitamin A metabolism in both humans and mice. We previously generated Rdh13 knockout mice and showed that Rdh13 deficiency causes severe acute retinal light damage. In this study, considering that Rdh13 is highly expressed in mouse liver, we further evaluated the potential effect of Rdh13 on liver injury induced by carbon tetrachloride (CCl4). Although Rdh13 deficiency showed no significant effect on liver histology and physiological functions under regular culture, the Rdh13–/– mice displayed an attenuated response to CCl4-induced liver injury. Their livers also exhibited less histological changes and contained lower levels of liver-related metabolism enzymes compared with the livers of wild-type (WT) mice. Furthermore, the Rdh13–/– mice had Rdh13 deficiency and thus their liver cells were protected from apoptosis, and the quantity of their proliferative cells became lower than that in WTafter CCl4 exposure. The ablation of Rdh13 gene decreased the expression levels of thyroid hormone-inducible nuclear protein 14 (Spot14) and cytochrome P450 (Cyp2e1) in the liver, especially after CCl4 treatment for 48 h. These data suggested that the alleviated liver damage induced by CCl4 in Rdh13–/– mice was caused by Cyp2e1 enzymes, which promoted reductive CCl4 metabolism by altering the status of thyroxine metabolism. This result further implicated Rdh13 as a potential drug target in preventing chemically induced liver injury.

Keywords

retinol dehydrogenase 13 carbon tetrachloride acute liver injury Cyp2e1 Spot14 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81430028), the Ministry of Science and Technology of China (No. 2011BAI15B02), the grants from the Science and Technology Commission of Shanghai Municipality (Nos.13DZ2280600 and 15DZ2290800), and the grant from Shanghai First People’s Hospital Affiliated to Shanghai Jiao Tong University (No. 81300776).

References

  1. 1.
    Belyaeva OV, Korkina OV, Stetsenko AV, Kedishvili NY. Human retinol dehydrogenase 13 (RDH13) is a mitochondrial short-chain dehydrogenase/reductase with a retinaldehyde reductase activity. FEBS J 2008; 275(1): 138–147CrossRefPubMedGoogle Scholar
  2. 2.
    Kavanagh KL, Jörnvall H, Persson B, Oppermann U. Medium-and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 2008; 65 (24): 3895–3906CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B, Jörnvall H. Shortchain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact 2003; 143-144: 247–253CrossRefPubMedGoogle Scholar
  4. 4.
    Jörnvall H, Persson B, Krook M, Atrian S, Gonzàlez-Duarte R, Jeffery J, Ghosh D. Short-chain dehydrogenases/reductases (SDR). Biochemistry 1995; 34(18): 6003–6013CrossRefPubMedGoogle Scholar
  5. 5.
    Kramm A, Kisiela M, Schulz R, Maser E. Short-chain dehydrogenases/ reductases in cyanobacteria. FEBS J 2012; 279(6): 1030–1043CrossRefPubMedGoogle Scholar
  6. 6.
    Simon A, Hellman U,Wernstedt C, Eriksson U. The retinal pigment epithelial-specific 11-cis retinol dehydrogenase belongs to the family of short chain alcohol dehydrogenases. J Biol Chem 1995; 270(3): 1107–1112CrossRefPubMedGoogle Scholar
  7. 7.
    Driessen CA, Janssen BP,Winkens HJ, van Vugt AH, de Leeuw TL, Janssen JJ. Cloning and expression of a cDNA encoding bovine retinal pigment epithelial 11-cis retinol dehydrogenase. Invest Ophthalmol Vis Sci 1995; 36(10): 1988–1996PubMedGoogle Scholar
  8. 8.
    Haeseleer F, Jang GF, Imanishi Y, Driessen CAGG, Matsumura M, Nelson PS, Palczewski K. Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina. J Biol Chem 2002; 277(47): 45537–45546CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang H, Cui X, Gu Q, Chen Y, Zhou J, Kuang Y, Wang Z, Xu X. Retinol dehydrogenase 13 protects the mouse retina from acute light damage. Mol Vis 2012; 2: 1021–1030Google Scholar
  10. 10.
    Kuniyoshi K, Sakuramoto H, Yoshitake K, Abe K, Ikeo K, Furuno M, Tsunoda K, Kusaka S, Shimomura Y, Iwata T. Longitudinal clinical course of three Japanese patients with Leber congenital amaurosis/early-onset retinal dystrophy with RDH12 mutation. Doc Ophthalmol 2014; 128(3): 219–228CrossRefPubMedGoogle Scholar
  11. 11.
    Kovalovich K, DeAngelis RA, Li W, Furth EE, Ciliberto G, Taub R. Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice. Hepatology 2000; 31(1): 149–159CrossRefPubMedGoogle Scholar
  12. 12.
    Otsuka T, Takagi H, Horiguchi N, Toyoda M, Sato K, Takayama H, Mori M. CCl4-induced acute liver injury in mice is inhibited by hepatocyte growth factor overexpression but stimulated by NK2 overexpression. FEBS Lett 2002; 532(3): 391–395CrossRefPubMedGoogle Scholar
  13. 13.
    Yu C, Wang F, Jin C, Wu X, Chan WK, McKeehan WL. Increased carbon tetrachloride-induced liver injury and fibrosis in FGFR4-deficient mice. Am J Pathol 2002; 161(6): 2003–2010CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Huh CG, Factor VM, Sánchez A, Uchida K, Conner EA, Thorgeirsson SS. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci USA 2004; 101(13): 4477–4482CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yamada Y, Fausto N. Deficient liver regeneration after carbon tetrachloride injury in mice lacking type 1 but not type 2 tumor necrosis factor receptor. Am J Pathol 1998; 152(6): 1577–1589PubMedPubMedCentralGoogle Scholar
  16. 16.
    Bisht S, Khan MA, Bekhit M, Bai H, Cornish T, Mizuma M, Rudek MA, Zhao M, Maitra A, Ray B, Lahiri D, Maitra A, Anders RA. A polymeric nanoparticle formulation of curcumin (NanoCurcTM) ameliorates CCl4-induced hepatic injury and fibrosis through reduction of pro-inflammatory cytokines and stellate cell activation. Lab Invest 2011; 91(9): 1383–1395CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang F, Shu R, Wu X, Zhao X, Feng D, Wang L, Lu S, Liu Q, Xiang Y, Fei J, Huang L,Wang Z. Delayed liver injury and impaired hepatocyte proliferation after carbon tetrachloride exposure in BPOZ2-deficient mice. Toxicol Lett 2009; 188(3): 201–207CrossRefPubMedGoogle Scholar
  18. 18.
    Natsume M, Tsuji H, Harada A, Akiyama M, Yano T, Ishikura H, Nakanishi I, Matsushima K, Kaneko S, Mukaida N. Attenuated liver fibrosis and depressed serum albumin levels in carbon tetrachloridetreated IL-6-deficient mice. J Leukoc Biol 1999, 66: 601–608CrossRefPubMedGoogle Scholar
  19. 19.
    Bansal MB, Kovalovich K, Gupta R, Li W, Agarwal A, Radbill B, Alvarez CE, Safadi R, Fiel MI, Friedman SL, Taub RA. Interleukin-6 protects hepatocytes from CCl4-mediated necrosis and apoptosis in mice by reducing MMP-2 expression. J Hepatol 2005; 42(4): 548–556CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gomez-Sanchez EP, Ganjam V, Chen YJ, Liu Y, Clark SA, Gomez-Sanchez CE. The 11β hydroxysteroid dehydrogenase 2 exists as an inactive dimer. Steroids 2001; 66(11): 845–848CrossRefPubMedGoogle Scholar
  21. 21.
    Belyaeva OV, Kedishvili NY. Human pancreas protein 2 (PAN2) has a retinal reductase activity and is ubiquitously expressed in human tissues. FEBS Lett 2002; 531(3): 489–493CrossRefPubMedGoogle Scholar
  22. 22.
    Kim TS, Maeda A, Maeda T, Heinlein C, Kedishvili N, Palczewski K, Nelson PS. Delayed dark adaptation in 11-cis-retinol dehydrogenase-deficient mice: a role of RDH11 in visual processes in vivo. J Biol Chem 2005; 280(10): 8694–8704CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Iannaccone A, Tedesco SA, Gallaher KT, Yamamoto H, Charles S, Dryja TP. Fundus albipunctatus in a 6-year old girl due to compound heterozygous mutations in the RDH5 gene. Doc Ophthalmol 2007; 115(2): 111–116CrossRefPubMedGoogle Scholar
  24. 24.
    Ajmal M, Khan MI, Neveling K, Khan YM, Ali SH, Ahmed W, Iqbal MS, Azam M, den Hollander AI, Collin RW, Qamar R, Cremers FP. Novel mutations in RDH5 cause fundus albipunctatus in two consanguineous Pakistani families. Mol Vis 2012; 2: 1558–1571Google Scholar
  25. 25.
    Albrecht JH, Hansen LK. Cyclin D1 promotes mitogen-independent cell cycle progression in hepatocytes. Cell Growth Differ 1999; 2: 397–404Google Scholar
  26. 26.
    Végran F, Boidot R, Solary E, Lizard-Nacol S. A short caspase-3 isoform inhibits chemotherapy-induced apoptosis by blocking apoptosome assembly. PLoS One 2011; 6(12): e29058CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002; 108(2): 153–164CrossRefPubMedGoogle Scholar
  28. 28.
    Dlugosz PJ, Billen LP, Annis MG, Zhu W, Zhang Z, Lin J, Leber B, Andrews DW. Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J 2006; 25(11): 2287–2296CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Albrecht JH, Hansen LK. Cyclin D1 promotes mitogen-independent cell cycle progression in hepatocytes. Cell Growth Differ 1999; 10 (6): 397–404PubMedGoogle Scholar
  30. 30.
    Fausto N. Liver regeneration. J Hepatol 2000; 32(1 Suppl): 19–31CrossRefPubMedGoogle Scholar
  31. 31.
    Coqueret O. Linking cyclins to transcriptional control. Gene 2002; 299(1-2): 35–55CrossRefPubMedGoogle Scholar
  32. 32.
    Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology 2006; 43(Suppl 1): S45–S53CrossRefPubMedGoogle Scholar
  33. 33.
    Xie Y, Hao H,Wang H, Guo C, Kang A,Wang G. Reversing effects of lignans on CCl4-induced hepatic CYP450 down regulation by attenuating oxidative stress. J Ethnopharmacol 2014; 155(1): 213–221CrossRefPubMedGoogle Scholar
  34. 34.
    Rosenberg DW, Drummond GS, Smith TJ. Depletion of cytochrome P-450 by thyroid hormone and cobalt-protoporphyrin IX in rat liver: evidence that susceptibility varies among forms of the heme protein. Pharmacology 1995; 51(4): 254–262CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaofang Cui
    • 1
    • 2
  • Benting Ma
    • 1
  • Yan Wang
    • 3
  • Yan Chen
    • 1
  • Chunling Shen
    • 1
  • Ying Kuang
    • 2
  • Jian Fei
    • 2
  • Lungen Lu
    • 3
  • Zhugang Wang
    • 1
    • 2
  1. 1.State Key Laboratory of Medical Genomics, Research Center for Experimental MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.Shanghai Research Center for Model OrganismsShanghaiChina
  3. 3.Department of Gastroenterology, Shanghai First People’s HospitalShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations