Frontiers of Medicine

, Volume 11, Issue 2, pp 214–222 | Cite as

Overexpressed miR-9 promotes tumor metastasis via targeting E-cadherin in serous ovarian cancer

  • Bo Zhou
  • Hongbin Xu
  • Meng Xia
  • Chaoyang Sun
  • Na Li
  • Ensong Guo
  • Lili Guo
  • Wanying Shan
  • Hao Lu
  • Yifan Wu
  • Yuan Li
  • Degui Yang
  • Danhui Weng
  • Li Meng
  • Junbo Hu
  • Ding Ma
  • Gang Chen
  • Kezhen Li
Research Article

Abstract

MicroRNAs (miRNAs) play critical roles in the development and progression in various cancers. Dysfunctional miR-9 expression remains ambiguous, and no consensus on the metastatic progression of ovarian cancer has been reached. In this study, results from the bioinformatics analysis show that the 3′-UTR of the E-cadherin mRNA was directly regulated by miR-9. Luciferase reporter assay results confirmed that miR-9 could directly target this 3′-UTR. miR-9 and E-cadherin expression in ovarian cancer tissue was quantified by qRT-PCR. Migration and invasion were detected by wound healing and Transwell system assay in SKOV3 and A2780. qRT-PCR and Western blot were performed to detect the epithelial‒mesenchymal transition-associated mRNA and proteins. Immunofluorescence technique was used to analyze the expression and subcellular localization of E-cadherin, N-cadherin, and vimentin. The results showed that miR-9 was frequently upregulated in metastatic serous ovarian cancer tissue compared with paired primary ones. Upregulation of miR-9 could downregulate the expression of E-cadherin but upregulate the expression of mesenchymal markers (N-cadherin and vimentin). Overexpression of miR-9 could promote the cell migration and invasion in ovarian cancer, and these processes could be effectively inhibited via miR-9 inhibitor. Thus, our study demonstrates that miR-9 may promote ovarian cancer metastasis via targeting E-cadherin and a novel potential therapeutic approach to control metastasis of ovarian cancer.

Keywords

ovarian cancer metastasis miR-9 E-cadherin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program, No. 2015CB553903), National Natural Science Foundation of China (Nos. 81272859, 81372801, 81230038, 81272422, 81302266, 81402163, 81402164, 81501530, and 81572569), and the Science and Technology Project of Shenzhen (No. Jcyj20140416122811911).

References

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63(1): 11–30CrossRefPubMedGoogle Scholar
  2. 2.
    Landen CN, Birrer MJ, Sood AK. Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol 2008; 26(6): 995–1005CrossRefPubMedGoogle Scholar
  3. 3.
    Cho KR, Shih Ie M. Ovarian cancer. Annu Rev Pathol 2009; 4(1): 287–313CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281–297CrossRefPubMedGoogle Scholar
  5. 5.
    Slack FJ, Weidhaas JB. MicroRNA in cancer prognosis. N Engl J Med 2008; 359(25): 2720–2722CrossRefPubMedGoogle Scholar
  6. 6.
    Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell 2005; 122(1): 6–7CrossRefPubMedGoogle Scholar
  7. 7.
    Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303(5654): 83–86CrossRefPubMedGoogle Scholar
  8. 8.
    Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya- Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA. miR-9, a MYC/ MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010; 12(3): 247–256PubMedPubMedCentralGoogle Scholar
  9. 9.
    Song Y, Li J, Zhu Y, Dai Y, Zeng T, Liu L, Li J, Wang H, Qin Y, Zeng M, Guan XY, Li Y. MicroRNA-9 promotes tumor metastasis via repressing E-cadherin in esophageal squamous cell carcinoma. Oncotarget 2014; 5(22): 11669–11680PubMedPubMedCentralGoogle Scholar
  10. 10.
    Sun Z, Han Q, Zhou N,Wang S, Lu S, Bai C, Zhao RC. MicroRNA-9 enhances migration and invasion through KLF17 in hepatocellular carcinoma. Mol Oncol 2013; 7(5): 884–894CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhu L, Chen H, Zhou D, Li D, Bai R, Zheng S, Ge W. MicroRNA-9 up-regulation is involved in colorectal cancer metastasis via promoting cell motility. Med Oncol 2012; 29(2): 1037–1043CrossRefPubMedGoogle Scholar
  12. 12.
    Shiiyama R, Fukushima S, Jinnin M, Yamashita J, Miyashita A, Nakahara S, Kogi A, Aoi J, Masuguchi S, Inoue Y, Ihn H. Sensitive detection of melanoma metastasis using circulating microRNA expression profiles. Melanoma Res 2013; 23(5): 366–372CrossRefPubMedGoogle Scholar
  13. 13.
    Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM. MicroRNA signatures in human ovarian cancer. Cancer Res 2007; 67(18): 8699–8707CrossRefPubMedGoogle Scholar
  14. 14.
    Laios A, O’Toole S, Flavin R, Martin C, Kelly L, Ring M, Finn SP, Barrett C, Loda M, Gleeson N, D’Arcy T, McGuinness E, Sheils O, Sheppard B, O’ Leary J. Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer 2008; 7(1): 35CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sun C, Li N, Yang Z, Zhou B, He Y, Weng D, Fang Y, Wu P, Chen P, Yang X, Ma D, Zhou J, Chen G. miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J Natl Cancer Inst 2013; 105(22): 1750–1758CrossRefPubMedGoogle Scholar
  16. 16.
    Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2(6): 442–454CrossRefPubMedGoogle Scholar
  17. 17.
    Dai Y, Zhou X. Computational methods for the identification of microRNA targets. Open Access Bioinformatics 2010; 2:29–39PubMedPubMedCentralGoogle Scholar
  18. 18.
    Dweep H, Sticht C, Pandey P, Gretz N. miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 2011; 44(5): 839–847CrossRefPubMedGoogle Scholar
  19. 19.
    Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2007; 2(2): 329–333CrossRefPubMedGoogle Scholar
  20. 20.
    Valster A, Tran NL, Nakada M, Berens ME, Chan AY, Symons M. Cell migration and invasion assays. Methods 2005; 37(2): 208–215CrossRefPubMedGoogle Scholar
  21. 21.
    Weng D, Song X, Xing H, Ma X, Xia X, Weng Y, Zhou J, Xu G, Meng L, Zhu T, Wang S, Ma D. Implication of the Akt2/survivin pathway as a critical target in paclitaxel treatment in human ovarian cancer cells. Cancer Lett 2009; 273(2): 257–265CrossRefPubMedGoogle Scholar
  22. 22.
    Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelialmesenchymal transitions in development and disease. Cell 2009; 139(5): 871–890CrossRefPubMedGoogle Scholar
  23. 23.
    Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I, Salzet M. Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett 2010; 291(1): 59–66CrossRefPubMedGoogle Scholar
  24. 24.
    Hurst DR, Edmonds MD, Welch DR. MetastamiR: the field of metastasis-regulatory microRNA is spreading. Cancer Res 2009; 69(19): 7495–7498CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Deo M, Yu JY, Chung KH, Tippens M, Turner DL. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn 2006; 235(9): 2538–2548CrossRefPubMedGoogle Scholar
  26. 26.
    Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, Kuker H, Sion-Vardy N, Tobar A, Kharenko O, Sitbon E, Lithwick Yanai G, Elyakim E, Cholakh H, Gibori H, Spector Y, Bentwich Z, Barshack I, Rosenfeld N. miR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol 2009; 19(3): 375–383CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Luo X, Fan S, Huang W, Zhai S, Ma Z, Li P, Sun SY, Wang X. Downregulation of IRS-1 promotes metastasis of head and neck squamous cell carcinoma. Oncol Rep 2012; 28(2): 659–667CrossRefPubMedGoogle Scholar
  28. 28.
    Lu MH, Huang CC, Pan MR, Chen HH, Hung WC. Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res 2012; 18(23): 6416–6425CrossRefPubMedGoogle Scholar
  29. 29.
    Gwak JM, Kim HJ, Kim EJ, Chung YR, Yun S, Seo AN, Lee HJ, Park SY. MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. Breast Cancer Res Treat 2014; 147(1): 39–49CrossRefPubMedGoogle Scholar
  30. 30.
    Wilting SM, Snijders PJ, Verlaat W, Jaspers A, van de Wiel MA, van Wieringen WN, Meijer GA, Kenter GG, Yi Y, le Sage C, Agami R, Meijer CJ, Steenbergen RD. Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis. Oncogene 2013; 32(1): 106–116CrossRefPubMedGoogle Scholar
  31. 31.
    Zheng L, Qi T, Yang D, Qi M, Li D, Xiang X, Huang K, Tong Q. MicroRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1. PLoS One 2013; 8(1): e55719CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Omura N, Li CP, Li A, Hong SM, Walter K, Jimeno A, Hidalgo M, Goggins M. Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther 2008; 7(7): 1146–1156CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D, Langer F, Kreipe H. Epigenetic inactivation of microRNA gene hsamir- 9–1 in human breast cancer. J Pathol 2008; 214(1): 17–24CrossRefPubMedGoogle Scholar
  34. 34.
    Inoue T, Iinuma H, Ogawa E, Inaba T, Fukushima R. Clinicopathological and prognostic significance of microRNA-107 and its relationship to DICER1 mRNA expression in gastric cancer. Oncol Rep 2012; 27(6): 1759–1764PubMedGoogle Scholar
  35. 35.
    Qiu Y, Luo X, Kan T, Zhang Y, Yu W, Wei Y, Shen N, Yi B, Jiang X. TGF-ß upregulates miR-182 expression to promote gallbladder cancer metastasis by targeting CADM1. Mol Biosyst 2014; 10(3): 679–685CrossRefPubMedGoogle Scholar
  36. 36.
    Yu J, Lei R, Zhuang X, Li X, Li G, Lev S, Segura MF, Zhang X, Hu G. MicroRNA-182 targets SMAD7 to potentiate TGFß-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun 2016; 7: 13884CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Bo Zhou
    • 1
    • 2
  • Hongbin Xu
    • 3
  • Meng Xia
    • 1
  • Chaoyang Sun
    • 1
  • Na Li
    • 1
  • Ensong Guo
    • 1
  • Lili Guo
    • 1
  • Wanying Shan
    • 1
  • Hao Lu
    • 1
  • Yifan Wu
    • 1
  • Yuan Li
    • 1
  • Degui Yang
    • 3
  • Danhui Weng
    • 1
  • Li Meng
    • 1
  • Junbo Hu
    • 1
  • Ding Ma
    • 1
  • Gang Chen
    • 1
  • Kezhen Li
    • 1
  1. 1.Cancer Biology Research Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological BehaviorsHubei Cancer Clinical Study CenterWuhanChina
  3. 3.Department of Gynecology and Obstetricsthe People’s Hospital of ShenzhenShenzhenChina

Personalised recommendations