Frontiers of Medicine

, Volume 11, Issue 2, pp 178–190 | Cite as

Behavioral methods for the functional assessment of hair cells in zebrafish

Review
  • 139 Downloads

Abstract

Zebrafish is an emerging animal model for studies on auditory system. This model presents high comparability with humans, good accessibility to the hearing organ, and high throughput capacity. To better utilize this animal model, methodologies need to be used to quantify the hearing function of the zebrafish. Zebrafish displays a series of innate and robust behavior related to its auditory function. Here, we reviewed the advantage of using zebrafish in auditory research and then introduced three behavioral tests, as follows: the startle response, the vestibular-ocular reflex, and rheotaxis. These tests are discussed in terms of their physiological characteristics, up-to-date technical development, and apparatus description. Test limitation and areas to improve are also introduced. Finally, we revealed the feasibility of these applications in zebrafish behavioral assessment and their potential in the high-throughput screening on hearing-related genes and drugs.

Keywords

zebrafish (Danio reriobehavior auditory startle response vestibular-ocular reflex rheotaxis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81470701) and the Shenzhen Overseas Talents Innovation Plan (No. KQCX20140522150857838) awarded to FC, and by the US Army Medical Research and Materiel Command (No. W81XWH1410006) awarded to HL. Figs. 2C, 4 and 5A were adapted from references 32, 40 and 63 respectively with permissions of Elsevier, Journal of Experimental Biology and the American Physiological Society. Fig. 2A and 2B were adapted from references 34 and 36 of the open access journal PLoS ONE, and Fig. 5B from reference 64 of the open access journal BMC Neuroscience.

References

  1. 1.
    He Y, Cai C, Tang D, Sun S, Li H. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts. Front Cell Neurosci 2014; 8: 382PubMedPubMedCentralGoogle Scholar
  2. 2.
    Shen X, Liu F, Wang Y, Wang H, Ma J, Xia W, Zhang J, Jiang N, Sun S, Wang X, Ma D. Down-regulation of msrb3 and destruction of normal auditory system development through hair cell apoptosis in zebrafish. Int J Dev Biol 2015; 59(4-6): 195–203CrossRefPubMedGoogle Scholar
  3. 3.
    Stawicki TM, Esterberg R, Hailey DW, Raible DW, Rubel EW. Using the zebrafish lateral line to uncover novel mechanisms of action and prevention in drug-induced hair cell death. Front Cell Neurosci 2015; 9: 46CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Steiner AB, Kim T, Cabot V, Hudspeth AJ. Dynamic gene expression by putative hair-cell progenitors during regeneration in the zebrafish lateral line. Proc Natl Acad Sci USA 2014; 111(14): E1393–E1401CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zamora LY, Lu Z. Alcohol-induced morphological deficits in the development of octavolateral organs of the zebrafish (Danio rerio). Zebrafish 2013; 10(1): 52–61CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Duncan JS, Fritzsch B. Evolution of sound and balance perception: innovations that aggregate single hair cells into the ear and transform a gravistatic sensor into the organ of corti. Anat Rec (Hoboken) 2012; 295(11): 1760–1774CrossRefGoogle Scholar
  7. 7.
    Ou HC, Santos F, Raible DW, Simon JA, Rubel EW. Drug screening for hearing loss: using the zebrafish lateral line to screen for drugs that prevent and cause hearing loss. Drug Discov Today 2010; 15(7-8): 265–271CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, Mc Laren K, Matthews L, Mc Laren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assunção JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, Mc Lay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, Mc Guire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, ErsanÜrün Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberländer M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nüsslein- Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013; 496(7446): 498–503CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nicolson T. The genetics of hearing and balance in zebrafish. Annu Rev Genet 2005; 39(1): 9–22CrossRefPubMedGoogle Scholar
  10. 10.
    Kanungo J, Cuevas E, Ali SF, Paule MG. Zebrafish model in drug safety assessment. Curr Pharm Des 2014; 20(34): 5416–5429CrossRefPubMedGoogle Scholar
  11. 11.
    Schibler A, Malicki J. A screen for genetic defects of the zebrafish ear. Mech Dev 2007; 124(7-8): 592–604CrossRefPubMedGoogle Scholar
  12. 12.
    Whitfield TT, Riley BB, Chiang MY, Phillips B. Development of the zebrafish inner ear. Dev Dyn 2002; 223(4): 427–458CrossRefPubMedGoogle Scholar
  13. 13.
    Ton C, Parng C. The use of zebrafish for assessing ototoxic and otoprotective agents. Hear Res 2005; 208(1-2): 79–88CrossRefPubMedGoogle Scholar
  14. 14.
    Tanimoto M, Ota Y, Horikawa K, Oda Y. Auditory input to CNS is acquired coincidentally with development of inner ear after formation of functional afferent pathway in zebrafish. J Neurosci 2009; 29(9): 2762–2767CrossRefPubMedGoogle Scholar
  15. 15.
    Fritzsch B, Beisel KW. Evolution and development of the vertebrate ear. Brain Res Bull 2001; 55(6): 711–721CrossRefPubMedGoogle Scholar
  16. 16.
    Haden M, Einarsson R, Yazejian B. Patch clamp recordings of hair cells isolated from zebrafish auditory and vestibular end organs. Neuroscience 2013; 248: 79–87CrossRefPubMedGoogle Scholar
  17. 17.
    Olt J, Johnson SL, Marcotti W. In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of developing and adult zebrafish. J Physiol 2014; 592(10): 2041–2058CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Trapani JG, Nicolson T. Physiological recordings from zebrafish lateral-line hair cells and afferent neurons. Methods Cell Biol 2010; 100: 219–231CrossRefPubMedGoogle Scholar
  19. 19.
    Trapani JG, Nicolson T. Mechanism of spontaneous activity in afferent neurons of the zebrafish lateral-line organ. J Neurosci 2011; 31(5): 1614–1623CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Uribe PM, Sun H, Wang K, Asuncion JD, Wang Q, Chen CW, Steyger PS, Smith ME, Matsui JI. Aminoglycoside-induced hair cell death of inner ear organs causes functional deficits in adult zebrafish (Danio rerio). PLoS ONE 2013; 8(3): e58755CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Egner SA, Mann DA. Auditory sensitivity of sergeant major damselfish Abudefduf saxatilis from post-settlement juvenile to adult. Mar Ecol Prog Ser 2005; 285: 213–222CrossRefGoogle Scholar
  22. 22.
    Higgs DM, Rollo AK, Souza MJ, Popper AN. Development of form and function in peripheral auditory structures of the zebrafish (Danio rerio). J Acoust Soc Am 2003; 113(2): 1145–1154CrossRefPubMedGoogle Scholar
  23. 23.
    Lechner W, Heiss E, Schwaha T, Glösmann M, Ladich F. Ontogenetic development of weberian ossicles and hearing abilities in the African bullhead catfish. PLoS ONE 2011; 6(4): e18511CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lechner W, Wysocki LE, Ladich F. Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni. BMC Biol 2010; 8(1): 10CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vasconcelos RO, Ladich F. Development of vocalization, auditory sensitivity and acoustic communication in the Lusitanian toadfish Halobatrachus didactylus. J Exp Biol 2008; 211(Pt 4): 502–509CrossRefPubMedGoogle Scholar
  26. 26.
    Bang PI, Sewell WF, Malicki JJ. Morphology and cell type heterogeneities of the inner ear epithelia in adult and juvenile zebrafish (Danio rerio). J Comp Neurol 2001; 438(2): 173–190CrossRefPubMedGoogle Scholar
  27. 27.
    Wang J, Song Q, Yu D, Yang G, Xia L, Su K, Shi H, Wang J, Yin S. Ontogenetic development of the auditory sensory organ in zebrafish (Danio rerio): changes in hearing sensitivity and related morphology. Sci Rep 2015; 5: 15943CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Browning LM, Huang T, Xu XH. Real-time in vivo imaging of sizedependent transport and toxicity of gold nanoparticles in zebrafish embryos using single nanoparticle plasmonic spectroscopy. Interface Focus 2013; 3(3): 20120098CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pinto-Teixeira F, Muzzopappa M, Swoger J, Mineo A, Sharpe J, López-Schier H. Intravital imaging of hair-cell development and regeneration in the zebrafish. Front Neuroanat 2013; 7: 33CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tanimoto M, Ota Y, Inoue M, Oda Y. Origin of inner ear hair cells: morphological and functional differentiation from ciliary cells into hair cells in zebrafish inner ear. J Neurosci 2011; 31(10): 3784–3794CrossRefPubMedGoogle Scholar
  31. 31.
    Wolman M, Granato M. Behavioral genetics in larval zebrafish: learning from the young. Dev Neurobiol 2012; 72(3): 366–372CrossRefPubMedGoogle Scholar
  32. 32.
    Raible DW, Kruse GJ. Organization of the lateral line system in embryonic zebrafish. J Comp Neurol 2000; 421(2): 189–198CrossRefPubMedGoogle Scholar
  33. 33.
    Niihori M, Platto T, Igarashi S, Hurbon A, Dunn AM, Tran P, Tran H, Mudery JA, Slepian MJ, Jacob A. Zebrafish swimming behavior as a biomarker for ototoxicity-induced hair cell damage: a highthroughput drug development platform targeting hearing loss. Transl Res 2015; 166(5): 440–450CrossRefPubMedGoogle Scholar
  34. 34.
    McNeil PL, Boyle D, Henry TB, Handy RD, Sloman KA. Effects of metal nanoparticles on the lateral line system and behavior in early life stages of zebrafish (Danio rerio). Aquat Toxicol 2014; 152: 318–323CrossRefPubMedGoogle Scholar
  35. 35.
    Olszewski J, Haehnel M, Taguchi M, Liao JC. Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral line. PLoS ONE 2012; 7(5): e36661CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Olive R, Wolf S, Dubreuil A, Bormuth V, Debrégeas G, Candelier R. Rheotaxis of larval zebrafish: behavioral study of a multi-sensory process. Front Syst Neurosci 2016; 10: 14CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Suli A, Watson GM, Rubel EW, Raible DW. Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PLoS ONE 2012; 7(2): e29727CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kimmel CB, Patterson J, Kimmel RO. The development and behavioral characteristics of the startle response in the zebrafish. Dev Psychobiol 1974; 7(1): 47–60CrossRefPubMedGoogle Scholar
  39. 39.
    McElligott MB, O’malley DM. Prey tracking by larval zebrafish: axial kinematics and visual control. Brain Behav Evol 2005; 66(3): 177–196CrossRefPubMedGoogle Scholar
  40. 40.
    Burgess HA, Granato M. Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 2007; 210(14): 2526–2539CrossRefPubMedGoogle Scholar
  41. 41.
    Zeddies DG, Fay RR. Development of the acoustically evoked behavioral response in zebrafish to pure tones. J Exp Biol 2005; 208(7): 1363–1372CrossRefPubMedGoogle Scholar
  42. 42.
    Nicolson T, Rüsch A, Friedrich RW, Granato M, Ruppersberg JP, Nüsslein- Volhard C. Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron 1998; 20(2): 271–283CrossRefPubMedGoogle Scholar
  43. 43.
    Chatterjee P, Padmanarayana M, Abdullah N, Holman CL, La Du J, Tanguay RL, Johnson CP. Otoferlin deficiency in zebrafish results in defects in balance and hearing: rescue of the balance and hearing phenotype with full-length and truncated forms of mouse otoferlin. Mol Cell Biol 2015; 35(6): 1043–1054CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cervi AL, Poling KR, Higgs DM. Behavioral measure of frequency detection and discrimination in the zebrafish, Danio rerio. Zebrafish 2012; 9(1): 1–7CrossRefPubMedGoogle Scholar
  45. 45.
    Liu F, Xia W, Hu J, Wang Y, Yang F, Sun S, Zhang J, Jiang N, Wang H, Tian W, Wang X, Ma D. Solute carrier family 26 member a2 (slc26a2) regulates Otic development and hair cell survival in zebrafish. PLoS ONE 2015; 10(9): e0136832CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Higgs DM, Souza MJ, Wilkins HR, Presson JC, Popper AN. Ageand size-related changes in the inner ear and hearing ability of the adult zebrafish (Danio rerio). J Assoc Res Otolaryngol 2002; 3(2): 174–184CrossRefPubMedGoogle Scholar
  47. 47.
    Bang PI, Yelick PC, Malicki JJ, Sewell WF. High-throughput behavioral screening method for detecting auditory response defects in zebrafish. J Neurosci Methods 2002; 118(2): 177–187CrossRefPubMedGoogle Scholar
  48. 48.
    Go W, Bessarab D, Korzh V. atp2b1a regulates Ca(2+) export during differentiation and regeneration of mechanosensory hair cells in zebrafish. Cell Calcium 2010; 48(5): 302–313CrossRefPubMedGoogle Scholar
  49. 49.
    Burgess HA, Granato M. Sensorimotor gating in larval zebrafish. J Neurosci 2007; 27(18): 4984–4994CrossRefPubMedGoogle Scholar
  50. 50.
    Bhandiwad AA, Zeddies DG, Raible DW, Rubel EW, Sisneros JA. Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay. J Exp Biol 2013; 216(18): 3504–3513CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hedrick TL. Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir Biomim 2008; 3(3): 034001CrossRefPubMedGoogle Scholar
  52. 52.
    Neumeister H, Szabo TM, Preuss T. Behavioral and physiological characterization of sensorimotor gating in the goldfish startle response. J Neurophysiol 2008; 99(3): 1493–1502CrossRefPubMedGoogle Scholar
  53. 53.
    Curtin PC, Preuss T. Glycine and GABAA receptors mediate tonic and phasic inhibitory processes that contribute to prepulse inhibition in the goldfish startle network. Front Neural Circuits 2015; 9: 12CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ku Y, Ahn JW, Kwon C, Suh MW, Lee JH, Oh SH, Kim HC. Gap prepulse inhibition of the auditory late response in healthy subjects. Psychophysiology 2015; 52(11): 1511–1519CrossRefPubMedGoogle Scholar
  55. 55.
    Maple AM, Smith KJ, Perna MK, Brown RW. Neonatal quinpirole treatment produces prepulse inhibition deficits in adult male and female rats. Pharmacol Biochem Behav 2015; 137: 93–100CrossRefPubMedGoogle Scholar
  56. 56.
    Moyer CE, Erickson SL, Fish KN, Thiels E, Penzes P, Sweet RA. Developmental trajectories of auditory cortex synaptic structures and gap-prepulse inhibition of acoustic startle between early adolescence and young adulthood in mice. Cereb Cortex 2016; 26(5): 2115–2126CrossRefPubMedGoogle Scholar
  57. 57.
    Saletti PG, Maior RS, Hori E, Almeida RM, Nishijo H, Tomaz C. Whole-body prepulse inhibition protocol to test sensorymotor gating mechanisms in monkeys. PLoS ONE 2014; 9(8): e105551CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Dehmel S, Eisinger D, Shore SE. Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs. Front Syst Neurosci 2012; 6: 42CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Walter M, Tziridis K, Ahlf S, Schulze H. Context dependent auditory thresholds determined by brainstem audiometry and prepulse inhibition in Mongolian gerbils. Open Journal of Acoustics 2012; 2(01): 34–49CrossRefGoogle Scholar
  60. 60.
    Ernest S, Rosa FM. A genomic region encompassing a newly identified exon provides enhancing activity sufficient for normal myo7aa expression in zebrafish sensory hair cells. Dev Neurobiol 2015; 75(9): 961–983CrossRefPubMedGoogle Scholar
  61. 61.
    Lappe-Osthege M, Talamo S, Helmchen C, Sprenger A. Overestimation of saccadic peak velocity recorded by electro-oculography compared to video-oculography and scleral search coil. Clin Neurophysiol 2010; 121(10): 1786–1787CrossRefPubMedGoogle Scholar
  62. 62.
    Kimmel DL, Mammo D, Newsome WT. Tracking the eye noninvasively: simultaneous comparison of the scleral search coil and optical tracking techniques in the macaque monkey. Front Behav Neurosci 2012; 6: 49CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Moorman SJ, Burress C, Cordova R, Slater J. Stimulus dependence of the development of the zebrafish (Danio rerio) vestibular system. J Neurobiol 1999; 38(2): 247–258CrossRefPubMedGoogle Scholar
  64. 64.
    Easter SS, Nicola GN. The development of eye movements in the zebrafish (Danio rerio). Dev Psychobiol 1997; 31(4): 267–276CrossRefPubMedGoogle Scholar
  65. 65.
    Beck JC, Gilland E, Tank DW, Baker R. Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish. J Neurophysiol 2004; 92(6): 3546–3561CrossRefPubMedGoogle Scholar
  66. 66.
    Mo W, Chen F, Nechiporuk A, Nicolson T. Quantification of vestibular-induced eye movements in zebrafish larvae. BMC Neurosci 2010; 11(1): 110CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Clemens Grisham R, Kindt K, Finger-Baier K, Schmid B, Nicolson T. Mutations in ap1b1 cause mistargeting of the Na(+)/K(+)- ATPase pump in sensory hair cells. PLoS ONE 2013; 8(4): e60866CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lambert FM, Beck JC, Baker R, Straka H. Semicircular canal size determines the developmental onset of angular vestibuloocular reflexes in larval Xenopus. J Neurosci 2008; 28(32): 8086–8095CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Sheets L, Trapani JG, Mo W, Obholzer N, Nicolson T. Ribeye is required for presynaptic Ca(V)1.3a channel localization and afferent innervation of sensory hair cells. Development 2011; 138(7): 1309–1319CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Bianco IH, Ma LH, Schoppik D, Robson DN, Orger MB, Beck JC, Li JM, Schier AF, Engert F, Baker R. The tangential nucleus controls a gravito-inertial vestibulo-ocular reflex. Curr Biol 2012; 22(14): 1285–1295CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Migliaccio AA, Schubert MC, Jiradejvong P, Lasker DM, Clendaniel RA, Minor LB. The three-dimensional vestibulo-ocular reflex evoked by high-acceleration rotations in the squirrel monkey. Exp Brain Res 2004; 159(4): 433–446CrossRefPubMedGoogle Scholar
  72. 72.
    Moorman SJ, Cordova R, Davies SA. A critical period for functional vestibular development in zebrafish. Dev Dyn 2002; 223(2): 285–291CrossRefPubMedGoogle Scholar
  73. 73.
    Delcourt J, Becco C, Vandewalle N, Poncin P. A video multitracking system for quantification of individual behavior in a large fish shoal: advantages and limits. Behav Res Methods 2009; 41(1): 228–235CrossRefPubMedGoogle Scholar
  74. 74.
    Fontaine E, Lentink D, Kranenbarg S, Müller UK, van Leeuwen JL, Barr AH, Burdick JW. Automated visual tracking for studying the ontogeny of zebrafish swimming. J Exp Biol 2008; 211(8): 1305–1316CrossRefPubMedGoogle Scholar
  75. 75.
    Pardo-Martin C, Chang TY, Koo BK, Gilleland CL, Wasserman SC, Yanik MF. High-throughput in vivo vertebrate screening. Nat Methods 2010; 7(8): 634–636CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Pulak R. Tools for automating the imaging of zebrafish larvae. Methods 2016; 96: 118–126CrossRefPubMedGoogle Scholar
  77. 77.
    Liu F, Yang F, Wen D, Xia W, Hao L, Hu J, Zong J, Shen X, Ma J, Jiang N, Sun S, Zhang J, Wang H, Wang X, Ma Z, Ma D. Grhl1 deficiency affects inner ear development in zebrafish. Int J Dev Biol 2015; 59(10-12): 417–423CrossRefPubMedGoogle Scholar
  78. 78.
    Goldfarb A, Avraham KB. Genetics of deafness: recent advances and clinical implications. J Basic Clin Physiol Pharmacol 2002; 13(2): 75–88CrossRefPubMedGoogle Scholar
  79. 79.
    Sang Q, Zhang J, Feng R, Wang X, Li Q, Zhao X, Xing Q, Chen W, Du J, Sun S, Chai R, Liu D, Jin L, He L, Li H, Wang L. Ildr1b is essential for semicircular canal development, migration of the posterior lateral line primordium and hearing ability in zebrafish: implications for a role in the recessive hearing impairment DFNB42. Hum Mol Genet 2014; 23(23): 6201–6211CrossRefPubMedGoogle Scholar
  80. 80.
    Harris JA, Cheng AG, Cunningham LL, Mac Donald G, Raible DW, Rubel EW. Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). J Assoc Res Otolaryngol 2003; 4(2): 219–234CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Akagi J, Khoshmanesh K, Evans B, Hall CJ, Crosier KE, Cooper JM, Crosier PS, Wlodkowic D. Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos. PLoS ONE 2012; 7(5): e36630CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Lammer E, Kamp HG, Hisgen V, Koch M, Reinhard D, Salinas ER, Wendler K, Zok S, Braunbeck T. Development of a flow-through system for the fish embryo toxicity test (FET) with the zebrafish (Danio rerio). Toxicol In Vitro 2009; 23(7): 1436–1442CrossRefPubMedGoogle Scholar
  83. 83.
    Ou H, Simon JA, Rubel EW, Raible DW. Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line. Hear Res 2012; 288(1-2): 58–66CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Owens KN, Santos F, Roberts B, Linbo T, Coffin AB, Knisely AJ, Simon JA, Rubel EW, Raible DW. Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet 2008; 4(2): e1000020CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Li P, White RM, Zon LI. Transplantation in zebrafish. Methods Cell Biol 2011; 105: 403–417CrossRefPubMedGoogle Scholar
  86. 86.
    Brandt T. Modeling brain function: the vestibulo-ocular reflex. Curr Opin Neurol 2001; 14(1): 1–4CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of BiologySouth University of Science and Technology of ChinaShenzhenChina
  2. 2.Department of Basic MedicineWuhan UniversityWuhanChina
  3. 3.State Key Laboratory of Analog and Mixed-Signal VLSIUniversity of MacauMacauChina
  4. 4.Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research InstituteWuhan UniversityWuhanChina
  5. 5.Research ServiceVA Loma Linda Healthcare SystemLoma LindaUSA
  6. 6.Department of Otolaryngology – Head & Neck SurgeryLoma Linda University School of MedicineLoma LindaUSA

Personalised recommendations