Skip to main content
Log in

Loss of liver kinase B1 causes planar polarity defects in cochlear hair cells in mice

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

The tumor suppressor gene liver kinase B1 (LKB1), also called STK11, encodes a serine/threonine kinase. LKB1 plays crucial roles in cell differentiation, proliferation, and polarity. In this study, LKB1 conditional knockout mice (LKB1Pax2 CKO mice) were generated using Pax2-Cre mice to investigate the function of LKB1 in inner ear hair cells during early embryonic period. LKB1Pax2 CKO mice died perinatally. Immunofluorescence and scanning electron microscopy revealed that stereociliary bundles in LKB1Pax2 CKO mice were clustered and misoriented, respectively. Moreover, ectopic distribution of kinocilium bundles resulting from abnormal migration of kinocilium was observed in the mutant mice. The orientation of stereociliary bundles and the migration of kinocilia are critical indicators of planar cell polarity (PCP) of hair cells. LKB1 deficiency in LKB1Pax2 CKO mice thus disrupted hair cell planar polarity during embryonic development. Our results suggest that LKB1 is required in PCP formation in cochlear hair cells in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holley MC. The auditory system, hearing loss and potential targets for drug development. Drug Discov Today 2005; 10(19): 1269–1282

    Article  PubMed  CAS  Google Scholar 

  2. Frolenkov GI, Belyantseva IA, Friedman TB, Griffith AJ. Genetic insights into the morphogenesis of inner ear hair cells. Nat Rev Genet 2004; 5(7): 489–498

    Article  PubMed  CAS  Google Scholar 

  3. Petit C, Richardson GP. Linking genes underlying deafness to hairbundle development and function. Nat Neurosci 2009; 12(6): 703–710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ueyama T, Sakaguchi H, Nakamura T, Goto A, Morioka S, Shimizu A, Nakao K, Hishikawa Y, Ninoyu Y, Kassai H, Suetsugu S, Koji T, Fritzsch B, Yonemura S, Hisa Y, Matsuda M, Aiba A, Saito N. Maintenance of stereocilia and apical junctional complexes by Cdc42 in cochlear hair cells. J Cell Sci 2014; 127(Pt 9): 2040–2052

    Article  PubMed  CAS  Google Scholar 

  5. Perrin BJ, Strandjord DM, Narayanan P, Henderson DM, Johnson KR, Ervasti JM. ß-Actin and fascin-2 cooperate to maintain stereocilia length. J Neurosci 2013; 33(19): 8114–8121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Francis SP, Krey JF, Krystofiak ES, Cui R, Nanda S, Xu W, Kachar B, Barr-Gillespie PG, Shin JB. A short splice form of Xin-actin binding repeat containing 2 (XIRP2) lacking the Xin repeats is required for maintenance of stereocilia morphology and hearing function. J Neurosci 2015; 35(5): 1999–2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sanchez-Cespedes M. A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 2007; 26(57): 7825–7832

    Article  PubMed  CAS  Google Scholar 

  8. Baas AF, Smit L, Clevers H. LKB1 tumor suppressor protein: PARtaker in cell polarity. Trends Cell Biol 2004; 14(6): 312–319

    Article  PubMed  CAS  Google Scholar 

  9. Ylikorkala A, Rossi DJ, Korsisaari N, Luukko K, Alitalo K, Henkemeyer M, Mäkelä TP. Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science 2001; 293(5533): 1323–1326

    Article  PubMed  CAS  Google Scholar 

  10. Koh HJ, Arnolds DE, Fujii N, Tran TT, Rogers MJ, Jessen N, Li Y, Liew CW, Ho RC, Hirshman MF, Kulkarni RN, Kahn CR, Goodyear LJ. Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3. Mol Cell Biol 2006; 26(22): 8217–8227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ikeda Y, Sato K, Pimentel DR, Sam F, Shaw RJ, Dyck JR, Walsh K. Cardiac-specific deletion of LKB1 leads to hypertrophy and dysfunction. J Biol Chem 2009; 284(51): 35839–35849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ohashi K, Ouchi N, Higuchi A, Shaw RJ, Walsh K. LKB1 deficiency in Tie2-Cre-expressing cells impairs ischemia-induced angiogenesis. J Biol Chem 2010; 285(29): 22291–22298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sun G, Reynolds R, Leclerc I, Rutter GA. RIP2-mediated LKB1 deletion causes axon degeneration in the spinal cord and hind-limb paralysis. Dis Model Mech 2011; 4(2): 193–202

    Article  PubMed  CAS  Google Scholar 

  14. Men Y, Zhang A, Li H, Zhang T, Jin Y, Li H, Zhang J, Gao J. LKB1 is required for the development and maintenance of stereocilia in inner ear hair cells in mice. PLoS ONE 2015; 10(8): e0135841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ruben RJ. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol 1967; Suppl 220: 1–44

    Google Scholar 

  16. Mates M. Atlas of anatomy: general anatomy and musculoskeletal system. Occup Ther Health Care 2008; 22(4): 76–77

    Article  PubMed  Google Scholar 

  17. Barald KF, Kelley MW. From placode to polarization: new tunes in inner ear development. Development 2004; 131(17): 4119–4130

    Article  PubMed  CAS  Google Scholar 

  18. Chen P, Segil N. p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti. Development 1999; 126(8): 1581–1590

    PubMed  CAS  Google Scholar 

  19. Chen P, Johnson JE, Zoghbi HY, Segil N. The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 2002; 129(10): 2495–2505

    PubMed  CAS  Google Scholar 

  20. Wang J, Mark S, Zhang X, Qian D, Yoo SJ, Radde-Gallwitz K, Zhang Y, Lin X, Collazo A, Wynshaw-Boris A, Chen P. Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway. Nat Genet 2005; 37(9): 980–985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yang H, Xie X, Deng M, Chen X, Gan L. Generation and characterization of Atoh1-Cre knock-in mouse line. Genesis 2010; 48(6): 407–413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ohyama T, Groves AK. Generation of Pax2-Cre mice by modification of a Pax2 bacterial artificial chromosome. Genesis 2004; 38(4): 195–199

    Article  PubMed  CAS  Google Scholar 

  23. Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010; 468 (7324): 653–658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sung JY, Woo CH, Kang YJ, Lee KY, Choi HC. AMPK induces vascular smooth muscle cell senescence via LKB1 dependent pathway. Biochem Biophys Res Commun 2011; 413(1): 143–148

    Article  PubMed  CAS  Google Scholar 

  25. Ross AJ, May-Simera H, Eichers ER, Kai M, Hill J, Jagger DJ, Leitch CC, Chapple JP, Munro PM, Fisher S, Tan PL, Phillips HM, Leroux MR, Henderson DJ, Murdoch JN, Copp AJ, Eliot MM, Lupski JR, Kemp DT, Dollfus H, Tada M, Katsanis N, Forge A, Beales PL. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet 2005; 37(10): 1135–1140

    Article  PubMed  CAS  Google Scholar 

  26. Jones C, Chen P. Primary cilia in planar cell polarity regulation of the inner ear. Curr Top Dev Biol 2008; 85: 197–224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Tilney LG, Tilney MS, De Rosier DJ. Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu Rev Cell Biol 1992; 8(1): 257–274

    Article  PubMed  CAS  Google Scholar 

  28. Cui C, Chatterjee B, Francis D, Yu Q, San Agustin JT, Francis R, Tansey T, Henry C, Wang B, Lemley B, Pazour GJ, Lo CW. Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome. Dis Model Mech 2011; 4(1): 43–56

    Article  PubMed  CAS  Google Scholar 

  29. Sipe CW, Lu X. Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms. Development 2011; 138(16): 3441–3449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. May-Simera H, Kelley MW. Planar cell polarity in the inner ear. Curr Top Dev Biol 2012; 101: 111–140

    Article  PubMed  CAS  Google Scholar 

  31. Curtin JA, Quint E, Tsipouri V, Arkell RM, Cattanach B, Copp AJ, Henderson DJ, Spurr N, Stanier P, Fisher EM, Nolan PM, Steel KP, Brown SD, Gray IC, Murdoch JN. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol 2003; 13(13): 1129–1133

    Article  PubMed  CAS  Google Scholar 

  32. Montcouquiol M, Rachel RA, Lanford PJ, Copeland NG, Jenkins NA, Kelley MW. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 2003; 423(6936): 173–177

    Article  PubMed  CAS  Google Scholar 

  33. Wang Y, Guo N, Nathans J. The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci 2006; 26(8): 2147–2156

    Article  PubMed  CAS  Google Scholar 

  34. Forge A, Souter M, Denman-Johnson K. Structural development of sensory cells in the ear. Semin Cell Dev Biol 1997; 8(3): 225–237

    Article  PubMed  CAS  Google Scholar 

  35. Rida PC, Chen P. Line up and listen: planar cell polarity regulation in the mammalian inner ear. Semin Cell Dev Biol 2009; 20(8): 978–985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Spicer J, Rayter S, Young N, Elliott R, Ashworth A, Smith D. Regulation of the Wnt signalling component PAR1A by the Peutz-Jeghers syndrome kinase LKB1. Oncogene 2003; 22(30): 4752–4756

    Article  PubMed  CAS  Google Scholar 

  37. Lin-Marq N, Borel C, Antonarakis SE. Peutz-Jeghers LKB1 mutants fail to activate GSK-3ß, preventing it from inhibiting Wnt signaling. Mol Genet Genomics 2005; 273(2): 184–196

    Article  PubMed  CAS  Google Scholar 

  38. Almuedo-Castillo M, Saló E, Adell T. Dishevelled is essential for neural connectivity and planar cell polarity in planarians. Proc Natl Acad Sci USA 2011; 108(7): 2813–2818

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jenny A, Reynolds-Kenneally J, Das G, Burnett M, Mlodzik M. Diego and Prickle regulate Frizzled planar cell polarity signalling by competing for Dishevelled binding. Nat Cell Biol 2005; 7(7): 691–697

    Article  PubMed  CAS  Google Scholar 

  40. Axelrod JD, Miller JR, Shulman JM, Moon RT, Perrimon N. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev 1998; 12(16): 2610–2622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Winter CG, Wang B, Ballew A, Royou A, Karess R, Axelrod JD, Luo L. Drosophila Rho-associated kinase (Drok) links Frizzledmediated planar cell polarity signaling to the actin cytoskeleton. Cell 2001; 105(1): 81–91

    Article  PubMed  CAS  Google Scholar 

  42. Usui T, Shima Y, Shimada Y, Hirano S, Burgess RW, Schwarz TL, Takeichi M, Uemura T. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 1999; 98(5): 585–595

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhang or Jiangang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men, Y., Zhang, A., Zhang, L. et al. Loss of liver kinase B1 causes planar polarity defects in cochlear hair cells in mice. Front. Med. 10, 481–489 (2016). https://doi.org/10.1007/s11684-016-0494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-016-0494-3

Keywords

Navigation