Frontiers of Medicine

, Volume 10, Issue 4, pp 420–429 | Cite as

Repression of CDKN2C caused by PML/RARα binding promotes the proliferation and differentiation block in acute promyelocytic leukemia

Research Article
  • 53 Downloads

Abstract

Inappropriate cell proliferation during oncogenesis is often accompanied by inactivation of components involved in the cell cycle machinery. Here, we report that cyclin-dependent kinase inhibitor 2C (CDKN2C) as a member of the cyclin-dependent kinase inhibitors is a target of the PML/RARα oncofusion protein in leukemogenesis of acute promyelocytic leukemia (APL).We found that CDKN2C was markedly downregulated in APL blasts compared with normal promyelocytes. Chromatin immunoprecipitation combined with quantitative polymerase chain reaction demonstrated that PML/RARα directly bound to the CDKN2C promoter in the APL patient-derived cell line NB4. Luciferase assays indicated that PML/RARα inhibited the CDKN2C promoter activity in a dose-dependent manner. Furthermore, all-trans retinoic acid treatment induced CDKN2C expression by releasing the PML/RARα binding on chromatin in NB4 cells. Functional studies showed that ectopic expression of CDKN2C induced a cell cycle arrest at the G0/G1 phase and a partial differentiation in NB4 cells. Finally, the transcriptional regulation of CDKN2C was validated in primary APL patient samples. Collectively, this study highlights the importance of CDKN2C inactivation in the abnormal cell cycle progression and differentiation block of APL cells and may provide new insights into the study of pathogenesis and targeted therapy of APL.

Keywords

CDKN2C acute promyelocytic leukemia cell cycle arrest differentiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lo-Coco F, Di Donato L; GIMEMA, Schlenk RF; German–Austrian Acute Myeloid Leukemia Study Group and Study Alliance Leukemia. Targeted therapy alone for acute promyelocytic leukemia. N Engl J Med 2016; 374(12): 12–1197CrossRefGoogle Scholar
  2. 2.
    Burnett AK, Russell NH, Hills RK, Bowen D, Kell J, Knapper S, Morgan YG, Lok J, Grech A, Jones G, Khwaja A, Friis L, McMullin MF, Hunter A, Clark RE, Grimwade D; UK National Cancer Research Institute Acute Myeloid Leukaemia Working Group. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial. Lancet Oncol 2015; 16(13): 13–1295CrossRefGoogle Scholar
  3. 3.
    Mi JQ, Chen SJ, Zhou GB, Yan XJ, Chen Z. Synergistic targeted therapy for acute promyelocytic leukaemia: a model of translational research in human cancer. J Intern Med 2015; 278(6): 6–627CrossRefGoogle Scholar
  4. 4.
    de Thé H, Chen Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer 2010; 10(11): 11–775Google Scholar
  5. 5.
    Wang K, Wang P, Shi J, Zhu X, He M, Jia X, Yang X, Qiu F, Jin W, Qian M, Fang H, Mi J, Yang X, Xiao H, Minden M, Du Y, Chen Z, Zhang J. PML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia. Cancer Cell 2010; 17(2): 2–186CrossRefGoogle Scholar
  6. 6.
    Martens JH, Brinkman AB, Simmer F, Francoijs KJ, Nebbioso A, Ferrara F, Altucci L, Stunnenberg HG. PML-RARa/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell 2010; 17(2): 2–173CrossRefGoogle Scholar
  7. 7.
    Hoemme C, Peerzada A, Behre G, Wang Y, Mc Clelland M, Nieselt K, Zschunke M, Disselhoff C, Agrawal S, Isken F, Tidow N, Berdel WE, Serve H, Müller-Tidow C. Chromatin modifications induced by PML-RARa repress critical targets in leukemogenesis as analyzed by ChIP-Chip. Blood 2008; 111(5): 5–2887CrossRefGoogle Scholar
  8. 8.
    Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 2013; 140(15): 15–3079CrossRefGoogle Scholar
  9. 9.
    Franklin DS, Godfrey VL, O’Brien DA, Deng C, Xiong Y. Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol Cell Biol 2000; 20(16): 16–6147CrossRefGoogle Scholar
  10. 10.
    Ramsey MR, Krishnamurthy J, Pei XH, Torrice C, Lin W, Carrasco DR, Ligon KL, Xiong Y, Sharpless NE. Expression of p16Ink4a compensates for p18Ink4c loss in cyclin-dependent kinase 4/6-dependent tumors and tissues. Cancer Res 2007; 67(10): 10–4732CrossRefGoogle Scholar
  11. 11.
    Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S, Su L, Xiong Y. CDK inhibitors p18(INK4c) and p27 (Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 1998; 12(18): 18–2899CrossRefGoogle Scholar
  12. 12.
    Drexler HG. Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukemia 1998; 12(6): 6–845CrossRefGoogle Scholar
  13. 13.
    Guo SX, Taki T, Ohnishi H, Piao HY, Tabuchi K, Bessho F, Hanada R, Yanagisawa M, Hayashi Y. Hypermethylation of p16 and p15 genes and RB protein expression in acute leukemia. Leuk Res 2000; 24(1): 1–39CrossRefGoogle Scholar
  14. 14.
    Ragione FD, Iolascon A. Inactivation of cyclin-dependent kinase inhibitor genes and development of human acute leukemias. Leuk Lymphoma 1997; 25(1-2): 23–35CrossRefPubMedGoogle Scholar
  15. 15.
    Casini T, Pelicci PG. A function of p21 during promyelocytic leukemia cell differentiation independent of CDK inhibition and cell cycle arrest. Oncogene 1999; 18(21): 21–3235CrossRefGoogle Scholar
  16. 16.
    Wang Y, Jin W, Jia X, Luo R, Tan Y, Zhu X, Yang X, Wang X, Wang K. Transcriptional repression of CDKN2D by PML/RARa contributes to the altered proliferation and differentiation block of acute promyelocytic leukemia cells. Cell Death Dis 2014; 5(10): e1431CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Thullberg M, Bartkova J, Khan S, Hansen K, Rönnstrand L, Lukas J, Strauss M, Bartek J. Distinct versus redundant properties among members of the INK4 family of cyclin-dependent kinase inhibitors. FEBS Lett 2000; 470(2): 2–161CrossRefGoogle Scholar
  18. 18.
    Pei XH, Bai F, Tsutsui T, Kiyokawa H, Xiong Y. Genetic evidence for functional dependency of p18Ink4c on Cdk4. Mol Cell Biol 2004; 24(15): 15–6653CrossRefGoogle Scholar
  19. 19.
    Bai F, Pei XH, Godfrey VL, Xiong Y. Haploinsufficiency of p18 (INK4c) sensitizes mice to carcinogen-induced tumorigenesis. Mol Cell Biol 2003; 23(4): 4–1269CrossRefGoogle Scholar
  20. 20.
    Latres E, Malumbres M, Sotillo R, Martín J, Ortega S, Martín-Caballero J, Flores JM, Cordón-Cardo C, Barbacid M. Limited overlapping roles of P15(INK4b) and P18(INK4c) cell cycle inhibitors in proliferation and tumorigenesis. EMBO J 2000; 19 (13): 3496–3506CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Leone PE, Walker BA, Jenner MW, Chiecchio L, Dagrada G, Protheroe RK, Johnson DC, Dickens NJ, Brito JL, Else M, Gonzalez D, Ross FM, Chen-Kiang S, Davies FE, Morgan GJ. Deletions of CDKN2C in multiple myeloma: biological and clinical implications. Clin Cancer Res 2008; 14(19): 19–6033CrossRefGoogle Scholar
  22. 22.
    Jalili A, Wagner C, Pashenkov M, Pathria G, Mertz KD, Widlund HR, Lupien M, Brunet JP, Golub TR, Stingl G, Fisher DE, Ramaswamy S, Wagner SN. Dual suppression of the cyclindependent kinase inhibitors CDKN2C and CDKN1A in human melanoma. J Natl Cancer Inst 2012; 104(21): 21–1673CrossRefGoogle Scholar
  23. 23.
    Cui H, Zhao C, Gong P, Wang L, Wu H, Zhang K, Zhou R, Wang L, Zhang T, Zhong S, Fan H. DNA methyltransferase 3A promotes cell proliferatiokn by silencing CDK inhibitor p18INK4C in gastric carcinogenesis. Sci Rep 2015; 5: 13781CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Payton JE, Grieselhuber NR, Chang LW, Murakami M, Geiss GK, Link DC, Nagarajan R, Watson MA, Ley TJ. High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples. J Clin Invest 2009; 119(6): 6–1714CrossRefGoogle Scholar
  25. 25.
    Qian M, Jin W, Zhu X, Jia X, Yang X, Du Y, Wang K, Zhang J. Structurally differentiated cis-elements that interact with PU.1 are functionally distinguishable in acute promyelocytic leukemia. J Hematol Oncol 2013; 6(1): 25CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Stegmaier K, Ross KN, Colavito SA, O’ Malley S, Stockwell BR, Golub TR. Gene expression-based high-throughput screening (GEHTS) and application to leukemia differentiation. Nat Genet 2004; 36(3): 3–257CrossRefGoogle Scholar
  27. 27.
    Forget A, Ayrault O, den Besten W, Kuo ML, Sherr CJ, Roussel MF. Differential post-transcriptional regulation of two Ink4 proteins, p18 Ink4c and p19 Ink4d. Cell Cycle 2008; 7(23): 23–3737CrossRefGoogle Scholar
  28. 28.
    Zindy F, den Besten W, Chen B, Rehg JE, Latres E, Barbacid M, Pollard JW, Sherr CJ, Cohen PE, Roussel MF. Control of spermatogenesis in mice by the cyclin D-dependent kinase inhibitors p18(Ink4c) and p19(Ink4d). Mol Cell Biol 2001; 21(9): 9–3244CrossRefGoogle Scholar
  29. 29.
    Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell 2006; 127(2): 2–265CrossRefGoogle Scholar
  30. 30.
    Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1998; 1378(2): F115–F177PubMedGoogle Scholar
  31. 31.
    Phelps DE, Hsiao KM, Li Y, Hu N, Franklin DS, Westphal E, Lee EY, Xiong Y. Coupled transcriptional and translational control of cyclin-dependent kinase inhibitor p18INK4c expression during myogenesis. Mol Cell Biol 1998; 18(4): 4–2334CrossRefGoogle Scholar
  32. 32.
    Morse L, Chen D, Franklin D, Xiong Y, Chen-Kiang S. Induction of cell cycle arrest and B cell terminal differentiation by CDK inhibitor p18(INK4c) and IL-6. Immunity 1997; 6(1): 1–47CrossRefGoogle Scholar
  33. 33.
    Yuan Y, Shen H, Franklin DS, Scadden DT, Cheng T. In vivo selfrenewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol 2004; 6(5): 5–436CrossRefGoogle Scholar
  34. 34.
    Yu H, Yuan Y, Shen H, Cheng T. Hematopoietic stem cell exhaustion impacted by p18 INK4C and p21 Cip1/Waf1 in opposite manners. Blood 2006; 107(3): 3–1200Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Medical Genomics and Shanghai Institute of HematologyRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.Institute of Health Sciences, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
  3. 3.Sino-French Research Center for Life Sciences and GenomicsRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations