Regional prefrontal cortical atrophy predicts specific cognitive-behavioral symptoms in ALS-FTD

Abstract

Amyotrophic Lateral Sclerosis-Frontotemporal Dementia (ALS-FTD) may present typical behavioral variant FTD symptoms. This study aims to determine whether profile and severity of cognitive-behavioral symptoms in ALS/ALS-FTD are predicted by regional cortical atrophy. The hypothesis is that executive dysfunction can be predicted by dorsolateral prefrontal cortical (dlPFC) atrophy, apathy by dorsomedial PFC (dmPFC) and anterior cingulate cortical (ACC) atrophy, disinhibition by orbitofrontal cortical (OFC) atrophy. 3.0 Tesla MRI scans were acquired from 22 people with ALS or ALS-FTD. Quantitative cortical thickness analysis was performed with FreeSurfer. A priori-defined regions of interest (ROI) were used to measure cortical thickness in each participant and calculate magnitude of atrophy in comparison to 115 healthy controls. Spearman correlations were used to evaluate associations between frontal ROI cortical thickness and cognitive-behavioral symptoms, measured by Neuropsychiatric Inventory Questionnaire (NPI-Q) and Clinical Dementia Rating (CDR) scale. ALS-FTD participants exhibited variable degrees of apathy (NPI-Q/apathy: 1.6 ± 1.2), disinhibition (NPI-Q/disinhibition: 1.2 ± 1.2), executive dysfunction (CDR/judgment-problem solving: 1.7 ± 0.8). Within the ALS-FTD group, executive dysfunction correlated with dlPFC atrophy (ρ:-0.65;p < 0.05); similar trends were seen for apathy with ACC (ρ:-0.53;p < 0.10) and dmPFC (ρ:-0.47;p < 0.10) atrophy, for disinhibition with OFC atrophy (ρ:-0.51;p < 0.10). Compared to people with ALS, those with ALS-FTD showed more diffuse atrophy involving precentral gyrus, prefrontal, temporal regions. Profile and severity of cognitive-behavioral symptoms in ALS-FTD are predicted by regional prefrontal atrophy. These findings are consistent with established brain-behavior models and support the role of quantitative MRI in diagnosis, management, counseling, monitoring and prognostication for a neurodegenerative disorder with diverse phenotypes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets generated during and/or analyzed during the current study may be available from the corresponding author on reasonable request.

References

  1. Abidi, M., Marco, G., Couillandre, A., Feron, M., Mseddi, E., Termoz, N., Querin, G., Pradat, P. F., & Bede, P. (2020). Adaptive functional reorganization in amyotrophic lateral sclerosis: Coexisting degenerative and compensatory changes. European Journal of Neurology, 27(1), 121–128.

    CAS  PubMed  Article  Google Scholar 

  2. Abrahams, S., et al. (1996). Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain, 119(Pt 6), 2105–2120.

    PubMed  Article  Google Scholar 

  3. Abrahams, S., Newton, J., Niven, E., Foley, J., & Bak, T. H. (2014). Screening for cognition and behaviour changes in ALS. Amyotroph Lateral Scler Frontotemporal Degener, 15(1–2), 9–14.

    PubMed  Article  Google Scholar 

  4. Agosta, F., Pagani, E., Petrolini, M., Caputo, D., Perini, M., Prelle, A., Salvi, F., & Filippi, M. (2010). Assessment of white matter tract damage in patients with amyotrophic lateral sclerosis: A diffusion tensor MR imaging tractography study. AJNR. American Journal of Neuroradiology, 31(8), 1457–1461.

    CAS  PubMed  Article  Google Scholar 

  5. Agosta, F., Valsasina, P., Riva, N., Copetti, M., Messina, M. J., Prelle, A., Comi, G., & Filippi, M. (2012). The cortical signature of amyotrophic lateral sclerosis. PLoS One, 7(8), e42816.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Bakkour, A., Morris, J. C., & Dickerson, B. C. (2009). The cortical signature of prodromal AD: Regional thinning predicts mild AD dementia. Neurology, 72(12), 1048–1055.

    PubMed  PubMed Central  Article  Google Scholar 

  7. Bede, P., & Hardiman, O. (2018). Longitudinal structural changes in ALS: A three time-point imaging study of white and gray matter degeneration. Amyotroph Lateral Scler Frontotemporal Degener, 19(3–4), 232–241.

    PubMed  Article  Google Scholar 

  8. Bede, P., Elamin, M., Byrne, S., McLaughlin, R. L., Kenna, K., Vajda, A., Pender, N., Bradley, D. G., & Hardiman, O. (2013). Basal ganglia involvement in amyotrophic lateral sclerosis. Neurology, 81(24), 2107–2115.

    PubMed  Article  Google Scholar 

  9. Bede, P., Elamin, M., Byrne, S., McLaughlin, R. L., Kenna, K., Vajda, A., Fagan, A., Bradley, D. G., & Hardiman, O. (2015). Patterns of cerebral and cerebellar white matter degeneration in ALS. Journal of Neurology, Neurosurgery, and Psychiatry, 86(4), 468–470.

    CAS  PubMed  Article  Google Scholar 

  10. Bede, P., Iyer, P. M., Schuster, C., Elamin, M., Mclaughlin, R. L., Kenna, K., & Hardiman, O. (2016). The selective anatomical vulnerability of ALS: 'disease-defining' and 'disease-defying' brain regions. Amyotroph Lateral Scler Frontotemporal Degener, 17(7–8), 561–570.

    PubMed  Article  Google Scholar 

  11. Bede, P., Iyer, P. M., Finegan, E., Omer, T., & Hardiman, O. (2017). Virtual brain biopsies in amyotrophic lateral sclerosis: Diagnostic classification based on in vivo pathological patterns. NeuroImage: Clinical, 15, 653–658.

    Article  Google Scholar 

  12. Bede, P., Omer, T., Finegan, E., Chipika, R. H., Iyer, P. M., Doherty, M. A., Vajda, A., Pender, N., McLaughlin, R. L., Hutchinson, S., & Hardiman, O. (2018a). Connectivity-based characterisation of subcortical grey matter pathology in frontotemporal dementia and ALS: A multimodal neuroimaging study. Brain Imaging and Behavior, 12(6), 1696–1707.

    PubMed  Article  Google Scholar 

  13. Bede, P., Querin, G., & Pradat, P. F. (2018b). The changing landscape of motor neuron disease imaging: The transition from descriptive studies to precision clinical tools. Current Opinion in Neurology, 31(4), 431–438.

    PubMed  Article  Google Scholar 

  14. Bede, P., Chipika, R. H., Finegan, E., Li Hi Shing, S., Doherty, M. A., Hengeveld, J. C., Vajda, A., Hutchinson, S., Donaghy, C., McLaughlin, R. L., & Hardiman, O. (2019). Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study. NeuroImage: Clinical, 24, 102054.

    Article  Google Scholar 

  15. Beeldman, E., Raaphorst, J., Klein Twennaar, M., de Visser, M., Schmand, B. A., & de Haan, R. J. (2016). The cognitive profile of ALS: A systematic review and meta-analysis update. Journal of Neurology, Neurosurgery, and Psychiatry, 87(6), 611–619.

    PubMed  Article  Google Scholar 

  16. Blasco, H., Patin, F., Descat, A., Garçon, G., Corcia, P., Gelé, P., Lenglet, T., Bede, P., Meininger, V., Devos, D., Gossens, J. F., & Pradat, P. F. (2018). A pharmaco-metabolomics approach in a clinical trial of ALS: Identification of predictive markers of progression. PLoS One, 13(6), e0198116.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Bonelli, R. M., & Cummings, J. L. (2007). Frontal-subcortical circuitry and behavior. Dialogues in Clinical Neuroscience, 9(2), 141–151.

    PubMed  PubMed Central  Article  Google Scholar 

  18. Brettschneider, J., Libon, D. J., Toledo, J. B., Xie, S. X., McCluskey, L., Elman, L., Geser, F., Lee, V. M. Y., Grossman, M., & Trojanowski, J. Q. (2012). Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta Neuropathologica, 123(3), 395–407.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Brooks, B. R., Miller, R. G., Swash, M., & Munsat, T. L. (2000). El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 1(5), 293–299.

    CAS  PubMed  Article  Google Scholar 

  20. Burke, T., Pinto-Grau, M., Lonergan, K., Elamin, M., Bede, P., Costello, E., Hardiman, O., & Pender, N. (2016a). Measurement of social cognition in amyotrophic lateral sclerosis: A population based study. PLoS One, 11(8), e0160850.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. Burke, T., et al. (2016b). Discordant performance on the 'Reading the Mind in the Eyes' Test, based on disease onset in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener, 17(7–8):467–472.

  22. Burke, T., Pinto-Grau, M., Lonergan, K., Bede, P., O'Sullivan, M., Heverin, M., Vajda, A., McLaughlin, R. L., Pender, N., & Hardiman, O. (2017). A cross-sectional population-based investigation into behavioral change in amyotrophic lateral sclerosis: Subphenotypes, staging, cognitive predictors, and survival. Annals of Clinical Translational Neurology, 4(5), 305–317.

    PubMed  Article  PubMed Central  Google Scholar 

  23. Cedarbaum, J. M., Stambler, N., Malta, E., Fuller, C., Hilt, D., Thurmond, B., & Nakanishi, A. (1999). The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS study group (phase III). Journal of the Neurological Sciences, 169(1–2), 13–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Chang, J. L., Lomen-Hoerth, C., Murphy, J., Henry, R. G., Kramer, J. H., Miller, B. L., & Gorno-Tempini, M. L. (2005). A voxel-based morphometry study of patterns of brain atrophy in ALS and ALS/FTLD. Neurology, 65(1), 75–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Chio, A., et al. (2010). Neurobehavioral symptoms in ALS are negatively related to caregivers' burden and quality of life. European Journal of Neurology, 17(10), 1298–1303.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Chipika, R. H., Finegan, E., Li Hi Shing, S., Hardiman, O., & Bede, P. (2019). Tracking a fast-moving disease: Longitudinal markers, monitoring, and clinical trial endpoints in ALS. Frontiers in Neurology, 10, 229.

    PubMed  PubMed Central  Article  Google Scholar 

  27. Christidi, F., Karavasilis, E., Rentzos, M., Kelekis, N., Evdokimidis, I., & Bede, P. (2018). Clinical and radiological markers of extra-motor deficits in amyotrophic lateral sclerosis. Frontiers in Neurology, 9, 1005.

    PubMed  PubMed Central  Article  Google Scholar 

  28. Christidi, F., Karavasilis, E., Rentzos, M., Velonakis, G., Zouvelou, V., Xirou, S., Argyropoulos, G., Papatriantafyllou, I., Pantolewn, V., Ferentinos, P., Kelekis, N., Seimenis, I., Evdokimidis, I., & Bede, P. (2019). Hippocampal pathology in amyotrophic lateral sclerosis: Selective vulnerability of subfields and their associated projections. Neurobiology of Aging, 84, 178–188.

    PubMed  Article  PubMed Central  Google Scholar 

  29. Christidi, F., et al. (2020). Neuroimaging data indicate divergent mesial temporal lobe profiles in amyotrophic lateral sclerosis, Alzheimer's disease and healthy aging. Data Brief, 28, 104991.

    PubMed  Article  PubMed Central  Google Scholar 

  30. Cummings, J. L., Mega, M., Gray, K., Rosenberg-Thompson, S., Carusi, D. A., & Gornbein, J. (1994). The neuropsychiatric inventory: Comprehensive assessment of psychopathology in dementia. Neurology, 44(12), 2308–2314.

    CAS  PubMed  Article  Google Scholar 

  31. Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980.

    PubMed  Article  Google Scholar 

  32. Devos, D., Moreau, C., Kyheng, M., Garçon, G., Rolland, A. S., Blasco, H., Gelé, P., Timothée Lenglet, T., Veyrat-Durebex, C., Corcia, P., Dutheil, M., Bede, P., Jeromin, A., Oeckl, P., Otto, M., Meininger, V., Danel-Brunaud, V., Devedjian, J. C., Duce, J. A., & Pradat, P. F. (2019). A ferroptosis-based panel of prognostic biomarkers for amyotrophic lateral sclerosis. Scientific Reports, 9(1), 2918.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. Elamin, M., Phukan, J., Bede, P., Jordan, N., Byrne, S., Pender, N., & Hardiman, O. (2011). Executive dysfunction is a negative prognostic indicator in patients with ALS without dementia. Neurology, 76(14), 1263–1269.

    CAS  PubMed  Article  Google Scholar 

  34. Elamin, M., Pinto-Grau, M., Burke, T., Bede, P., Rooney, J., O’Sullivan, M., Lonergan, K., Kirby, E., Quinlan, E., Breen, N., Vajda, A., Heverin, M., Pender, N., & Hardiman, O. (2017). Identifying behavioural changes in ALS: Validation of the Beaumont Behavioural inventory (BBI). Amyotroph Lateral Scler Frontotemporal Degener, 18(1–2), 68–73.

    PubMed  Article  Google Scholar 

  35. Femiano, C., et al. (2018). Apathy is correlated with widespread diffusion tensor imaging (DTI) impairment in amyotrophic lateral sclerosis. Behavioural Neurology, 2018, 2635202.

    PubMed  PubMed Central  Article  Google Scholar 

  36. Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774–781.

    PubMed  PubMed Central  Article  Google Scholar 

  37. Floeter, M. K., & Gendron, T. F. (2018). Biomarkers for amyotrophic lateral sclerosis and Frontotemporal dementia associated with Hexanucleotide expansion mutations in C9orf72. Frontiers in Neurology, 9, 1063.

    PubMed  PubMed Central  Article  Google Scholar 

  38. Floeter, M. K., Bageac, D., Danielian, L. E., Braun, L. E., Traynor, B. J., & Kwan, J. Y. (2016). Longitudinal imaging in C9orf72 mutation carriers: Relationship to phenotype. Neuroimage Clin, 12, 1035–1043.

    PubMed  PubMed Central  Article  Google Scholar 

  39. Floeter, M. K., Traynor, B. J., Farren, J., Braun, L. E., Tierney, M., Wiggs, E. A., & Wu, T. (2017). Disease progression in C9orf72 mutation carriers. Neurology, 89(3), 234–241.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). "mini-mental state". A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    CAS  PubMed  Article  Google Scholar 

  41. Grollemund, V., Pradat, P. F., Querin, G., Delbot, F., le Chat, G., Pradat-Peyre, J. F., & Bede, P. (2019). Machine learning in amyotrophic lateral sclerosis: Achievements, pitfalls, and future directions. Frontiers in Neuroscience, 13, 135.

    PubMed  PubMed Central  Article  Google Scholar 

  42. Hu, W. T., Shelnutt, M., Wilson, A., Yarab, N., Kelly, C., Grossman, M., Libon, D. J., Khan, J., Lah, J. J., Levey, A. I., & Glass, J. (2013). Behavior matters--cognitive predictors of survival in amyotrophic lateral sclerosis. PLoS One, 8(2), e57584.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Kasper, E., Schuster, C., Machts, J., Kaufmann, J., Bittner, D., Vielhaber, S., Benecke, R., Teipel, S., & Prudlo, J. (2014). Microstructural white matter changes underlying cognitive and Behavioural impairment in ALS - an in vivo study using DTI. PLoS One, 9(12), e114543.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. Koziol, L. F., Budding, D. E., & Chidekel, D. (2012). From movement to thought: Executive function, embodied cognition, and the cerebellum. The Cerebellum, 11(2), 505–525.

    PubMed  Article  Google Scholar 

  45. Leslie, F. V., et al. (2014). Semantic deficits in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener, 16(1–2):46–53.

  46. Lillo, P., Mioshi, E., Burrell, J. R., Kiernan, M. C., Hodges, J. R., & Hornberger, M. (2012). Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS One, 7(8), e43993.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Machts, J., Loewe, K., Kaufmann, J., Jakubiczka, S., Abdulla, S., Petri, S., Dengler, R., Heinze, H. J., Vielhaber, S., Schoenfeld, M. A., & Bede, P. (2015). Basal ganglia pathology in ALS is associated with neuropsychological deficits. Neurology, 85(15), 1301–1309.

    CAS  PubMed  Article  Google Scholar 

  48. Massimo, L., Powers, C., Moore, P., Vesely, L., Avants, B., Gee, J., Libon, D. J., & Grossman, M. (2009). Neuroanatomy of apathy and disinhibition in frontotemporal lobar degeneration. Dementia and Geriatric Cognitive Disorders, 27(1), 96–104.

    PubMed  PubMed Central  Article  Google Scholar 

  49. Mioshi, E., Lillo, P., Yew, B., Hsieh, S., Savage, S., Hodges, J. R., Kiernan, M. C., & Hornberger, M. (2013). Cortical atrophy in ALS is critically associated with neuropsychiatric and cognitive changes. Neurology, 80(12), 1117–1123.

    PubMed  Article  Google Scholar 

  50. Mioshi, E., Hsieh, S., Caga, J., Ramsey, E., Chen, K., Lillo, P., Simon, N., Vucic, S., Hornberger, M., Hodges, J. R., & Kiernan, M. C. (2014). A novel tool to detect behavioural symptoms in ALS. Amyotroph Lateral Scler Frontotemporal Degener, 15(3–4), 298–304.

    PubMed  Article  PubMed Central  Google Scholar 

  51. Morris, J. C. (1997). Clinical dementia rating: A reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. International Psychogeriatrics, 9(Suppl 1), 173–176 discussion 177-8.

    PubMed  Article  PubMed Central  Google Scholar 

  52. Murphy, J., Ahmed, F., & Lomen-Hoerth, C. (2015). The UCSF screening exam effectively screens cognitive and behavioral impairment in patients with ALS. Amyotroph Lateral Scler Frontotemporal Degener, 16(1–2), 24–30.

    PubMed  Article  PubMed Central  Google Scholar 

  53. Murphy, J., Factor-Litvak, P., Goetz, R., Lomen-Hoerth, C., Nagy, P. L., Hupf, J., Singleton, J., Woolley, S., Andrews, H., Heitzman, D., Bedlack, R. S., Katz, J. S., Barohn, R. J., Sorenson, E. J., Oskarsson, B., Fernandes Filho, J. A., Kasarskis, E. J., Mozaffar, T., Rollins, Y. D., Nations, S. P., Swenson, A. J., Koczon-Jaremko, B. A., Mitsumoto, H., & ALS COSMOS. (2016). Cognitive-behavioral screening reveals prevalent impairment in a large multicenter ALS cohort. Neurology, 86(9), 813–820.

    PubMed  PubMed Central  Article  Google Scholar 

  54. Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., Micsenyi, M. C., Chou, T. T., Bruce, J., Schuck, T., Grossman, M., Clark, C. M., McCluskey, L. F., Miller, B. L., Masliah, E., Mackenzie, I. R., Feldman, H., Feiden, W., Kretzschmar, H. A., Trojanowski, J. Q., & Lee, V. M. Y. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314(5796), 130–133.

    CAS  PubMed  Article  Google Scholar 

  55. O'Callaghan, C., Bertoux, M., & Hornberger, M. (2013). Beyond and below the cortex: The contribution of striatal dysfunction to cognition and behaviour in neurodegeneration. Journal of Neurology, Neurosurgery, and Psychiatry, 85(4):371–8.

  56. Omer, T., Finegan, E., Hutchinson, S., Doherty, M., Vajda, A., McLaughlin, R. L., Pender, N., Hardiman, O., & Bede, P. (2017). Neuroimaging patterns along the ALS-FTD spectrum: A multiparametric imaging study. Amyotroph Lateral Scler Frontotemporal Degener, 18(7–8), 611–623.

    CAS  PubMed  Article  Google Scholar 

  57. Pettit, L. D., Bastin, M. E., Smith, C., Bak, T. H., Gillingwater, T. H., & Abrahams, S. (2013). Executive deficits, not processing speed relates to abnormalities in distinct prefrontal tracts in amyotrophic lateral sclerosis. Brain, 136(Pt 11), 3290–3304.

    PubMed  Article  Google Scholar 

  58. Prell, T., & Grosskreutz, J. (2013). The involvement of the cerebellum in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener, 14(7–8), 507–515.

    CAS  PubMed  Article  Google Scholar 

  59. Querin, G., el Mendili, M. M., Bede, P., Delphine, S., Lenglet, T., Marchand-Pauvert, V., & Pradat, P. F. (2018). Multimodal spinal cord MRI offers accurate diagnostic classification in ALS. Journal of Neurology, Neurosurgery, and Psychiatry, 89(11), 1220–1221.

    PubMed  Article  Google Scholar 

  60. Quinn, C., Elman, L., McCluskey, L., Hoskins, K., Karam, C., Woo, J. H., Poptani, H., Wang, S., Chawla, S., Kasner, S. E., & Grossman, M. (2012). Frontal lobe abnormalities on MRS correlate with poor letter fluency in ALS. Neurology, 79(6), 583–588.

    PubMed  PubMed Central  Article  Google Scholar 

  61. Raaphorst, J., Beeldman, E., de Visser, M., de Haan, R. J., & Schmand, B. (2012a). A systematic review of behavioural changes in motor neuron disease. Amyotrophic Lateral Sclerosis, 13(6), 493–501.

    PubMed  Article  PubMed Central  Google Scholar 

  62. Raaphorst, J., Beeldman, E., Schmand, B., Berkhout, J., Linssen, W. H. J. P., van den Berg, L. H., Pijnenburg, Y. A., Grupstra, H. F., Weikamp, J. G., Schelhaas, H. J., Papma, J. M., van Swieten, J. C., de Visser, M., & de Haan, R. J. (2012b). The ALS-FTD-Q: A new screening tool for behavioral disturbances in ALS. Neurology, 79(13), 1377–1383.

    PubMed  Article  PubMed Central  Google Scholar 

  63. Radakovic, R., Stephenson, L., Colville, S., Swingler, R., Chandran, S., & Abrahams, S. (2016). Multidimensional apathy in ALS: Validation of the dimensional apathy scale. Journal of Neurology, Neurosurgery, and Psychiatry, 87(6), 663–669.

    PubMed  Article  PubMed Central  Google Scholar 

  64. Rajagopalan, V., & Pioro, E. P. (2014). Distinct patterns of cortical atrophy in ALS patients with or without dementia: An MRI VBM study. Amyotroph Lateral Scler Frontotemporal Degener, 15(3–4), 216–225.

    PubMed  Article  PubMed Central  Google Scholar 

  65. Rascovsky, K., Hodges, J. R., Knopman, D., Mendez, M. F., Kramer, J. H., Neuhaus, J., van Swieten, J. C., Seelaar, H., Dopper, E. G. P., Onyike, C. U., Hillis, A. E., Josephs, K. A., Boeve, B. F., Kertesz, A., Seeley, W. W., Rankin, K. P., Johnson, J. K., Gorno-Tempini, M. L., Rosen, H., Prioleau-Latham, C. E., Lee, A., Kipps, C. M., Lillo, P., Piguet, O., Rohrer, J. D., Rossor, M. N., Warren, J. D., Fox, N. C., Galasko, D., Salmon, D. P., Black, S. E., Mesulam, M., Weintraub, S., Dickerson, B. C., Diehl-Schmid, J., Pasquier, F., Deramecourt, V., Lebert, F., Pijnenburg, Y., Chow, T. W., Manes, F., Grafman, J., Cappa, S. F., Freedman, M., Grossman, M., & Miller, B. L. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain, 134(Pt 9), 2456–2477.

    PubMed  PubMed Central  Article  Google Scholar 

  66. Rosen, H. J., Allison, S. C., Schauer, G. F., Gorno-Tempini, M. L., Weiner, M. W., & Miller, B. L. (2005). Neuroanatomical correlates of behavioural disorders in dementia. Brain, 128(Pt 11), 2612–2625.

    PubMed  PubMed Central  Article  Google Scholar 

  67. Sarro, L., Agosta, F., Canu, E., Riva, N., Prelle, A., Copetti, M., Riccitelli, G., Comi, G., & Filippi, M. (2011). Cognitive functions and white matter tract damage in amyotrophic lateral sclerosis: A diffusion tensor tractography study. AJNR. American Journal of Neuroradiology, 32(10), 1866–1872.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. Schuster, C., Kasper, E., Dyrba, M., Machts, J., Bittner, D., Kaufmann, J., Mitchell, A. J., Benecke, R., Teipel, S., Vielhaber, S., & Prudlo, J. (2014). Cortical thinning and its relation to cognition in amyotrophic lateral sclerosis. Neurobiology of Aging, 35(1), 240–246.

    PubMed  Article  PubMed Central  Google Scholar 

  69. Schuster, C., Elamin, M., Hardiman, O., & Bede, P. (2016a). The segmental diffusivity profile of amyotrophic lateral sclerosis associated white matter degeneration. European Journal of Neurology, 23(8), 1361–1371.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. Schuster, C., Hardiman, O., & Bede, P. (2016b). Development of an automated MRI-based diagnostic protocol for amyotrophic lateral sclerosis using disease-specific pathognomonic features: A quantitative disease-state classification study. PLoS One, 11(12), e0167331.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. Schuster, C., Hardiman, O., & Bede, P. (2017). Survival prediction in amyotrophic lateral sclerosis based on MRI measures and clinical characteristics. BMC Neurology, 17(1), 73.

    PubMed  PubMed Central  Article  Google Scholar 

  72. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 42–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Simon, N., & Goldstein, L. H. (2019). Screening for cognitive and behavioral change in amyotrophic lateral sclerosis/motor neuron disease: A systematic review of validated screening methods. Amyotroph Lateral Scler Frontotemporal Degener, 20(1–2), 1–11.

    PubMed  Article  Google Scholar 

  74. Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., Filippini, N., Watkins, K. E., Toro, R., Laird, A. R., & Beckmann, C. F. (2009). Correspondence of the brain's functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Strata, P., Scelfo, B., & Sacchetti, B. (2011). Involvement of cerebellum in emotional behavior. Physiological Research, 60(Suppl 1), S39–S48.

    CAS  PubMed  Article  Google Scholar 

  76. Strong, M. J., Grace, G. M., Freedman, M., Lomen-Hoerth, C., Woolley, S., Goldstein, L. H., Murphy, J., Shoesmith, C., Rosenfeld, J., Leigh, P. N., Bruijn, L., Ince, P., & Figlewicz, D. (2009). Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis, 10(3), 131–146.

    PubMed  Article  Google Scholar 

  77. Stuss, D. T., & Alexander, M. P. (2007). Is there a dysexecutive syndrome? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 901–915.

    PubMed  PubMed Central  Article  Google Scholar 

  78. Touroutoglou, A., Hollenbeck, M., Dickerson, B. C., & Feldman Barrett, L. (2012). Dissociable large-scale networks anchored in the right anterior insula subserve affective experience and attention. Neuroimage, 60(4), 1947–1958.

    PubMed  PubMed Central  Article  Google Scholar 

  79. Tsujimoto, M., Senda, J., Ishihara, T., Niimi, Y., Kawai, Y., Atsuta, N., Watanabe, H., Tanaka, F., Naganawa, S., & Sobue, G. (2011). Behavioral changes in early ALS correlate with voxel-based morphometry and diffusion tensor imaging. Journal of the Neurological Sciences, 307(1–2), 34–40.

    PubMed  Article  PubMed Central  Google Scholar 

  80. Weintraub, S., Salmon, D., Mercaldo, N., Ferris, S., Graff-Radford, N. R., Chui, H., Cummings, J., DeCarli, C., Foster, N. L., Galasko, D., Peskind, E., Dietrich, W., Beekly, D. L., Kukull, W. A., & Morris, J. C. (2009). The Alzheimer's disease Centers' uniform data set (UDS): The neuropsychologic test battery. Alzheimer Disease and Associated Disorders, 23(2), 91–101.

    PubMed  PubMed Central  Article  Google Scholar 

  81. Welsh, R. C., Jelsone-Swain, L. M., & Foerster, B. R. (2013). The utility of independent component analysis and machine learning in the identification of the amyotrophic lateral sclerosis diseased brain. Frontiers in Human Neuroscience, 7, 251.

    PubMed  PubMed Central  Article  Google Scholar 

  82. Westeneng, H. J., Verstraete, E., Walhout, R., Schmidt, R., Hendrikse, J., Veldink, J. H., van den Heuvel, M. P., & van den Berg, L. H. (2015). Subcortical structures in amyotrophic lateral sclerosis. Neurobiology of Aging, 36(2), 1075–1082.

    PubMed  Article  Google Scholar 

  83. Westeneng, H. J., Walhout, R., Straathof, M., Schmidt, R., Hendrikse, J., Veldink, J. H., van den Heuvel, M. P., & van den Berg, L. H. (2016). Widespread structural brain involvement in ALS is not limited to the C9orf72 repeat expansion. Journal of Neurology, Neurosurgery, and Psychiatry, 87(12), 1354–1360.

    PubMed  PubMed Central  Article  Google Scholar 

  84. Whitwell, J. L., Jack, C. R., Senjem, M. L., & Josephs, K. A. (2006). Patterns of atrophy in pathologically confirmed FTLD with and without motor neuron degeneration. Neurology, 66(1), 102–104.

    PubMed  PubMed Central  Article  Google Scholar 

  85. Woolley, S. C., Zhang, Y., Schuff, N., Weiner, M. W., & Katz, J. S. (2011). Neuroanatomical correlates of apathy in ALS using 4 tesla diffusion tensor MRI. Amyotrophic Lateral Sclerosis, 12(1), 52–58.

    PubMed  Article  Google Scholar 

  86. Yunusova, Y., Plowman, E. K., Green, J. R., Barnett, C., & Bede, P. (2019). Clinical measures of bulbar dysfunction in ALS. Frontiers in Neurology, 10, 106.

    PubMed  PubMed Central  Article  Google Scholar 

  87. Zamboni, G., Huey, E. D., Krueger, F., Nichelli, P. F., & Grafman, J. (2008). Apathy and disinhibition in frontotemporal dementia: Insights into their neural correlates. Neurology, 71(10), 736–742.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgments

We express special appreciation to the participants in this study and their families for their valuable contributions, without which this research would not have been possible. We thank the staff at the Martinos Center for Biomedical Imaging, particularly Mary Foley and Larry White, for their technical expertise, and Jeanette Gunther and the staff of the MGH ADRC and the MGH Neurological Clinical Research Institute for their expertise in coordinating and evaluating participants in the Longitudinal Cohort and with ALS measures, respectively. We are also grateful to Elena Ratti’s Master’s thesis committee advisors, Dr. Darin Dougherty and Dr. Catherine Lomen-Hoerth, for their precious advice and guidance for the success of this study.

Funding

This study was funded by: MGH Neurology Clinical Research Institute, Massachusetts ADRC and Harvard NeuroDiscovery Center’s 2013 Pilot Award Program; National Institute of Neurological Disorders and Stroke (NINDS): R25 NS065743; R21 NS079905; R01 AG030311; P01 AG005134; and the Dr. Anne B. Young Neuroscience Translational Medicine Fellowship (Massachusetts General Hospital Neurology and Biogen).

The sponsors did not have any involvement in the study design, in the collection, analysis and interpretation of data, in the writing of the report, or in the decision to submit the article for publication.

Author information

Affiliations

Authors

Contributions

Elena Ratti: study concept and design, data acquisition, data analysis, manuscript preparation, critical revision of the manuscript for important intellectual content.

Kimiko Domoto-Reilly: data acquisition, critical revision of the manuscript for important intellectual content.

Christina Caso: data acquisition and data analysis.

Alyssa Murphy: data acquisition.

Michael Brickhouse: data acquisition and data analysis.

Daisy Hochberg: data acquisition.

Nikos Makris: study concept and design, data analysis, critical revision of the manuscript for important intellectual content.

Merit E. Cudkowicz: study concept and design, critical revision of the manuscript for important intellectual content.

Bradford C. Dickerson: study concept and design, data acquisition, data analysis, manuscript preparation, critical revision of the manuscript for important intellectual content.

Corresponding author

Correspondence to Elena Ratti.

Ethics declarations

Ethical approval

The Partners Human Research Committee at Massachusetts General Hospital has approved the involvement of human subjects in this study.

Consent to participate

All participants provided written informed consent in accordance with the Partners Human Research Committee at Massachusetts General Hospital guidelines.

Consent for publication

All participants provided written informed consent that included potential of sharing anonymized information collected during this study with the general scientific community.

Competing interests

Elena Ratti received fellowship grants from the National Institute of Neurological Disorders and Stroke (NINDS) with grant number R25NS065743, title: Neuroscience resident research program, and the Dr. Anne B. Young Neuroscience Translational Medicine Fellowship (Massachusetts General Hospital Neurology and Biogen). She had research grants from the Harvard NeuroDiscovery Center and the Amyotrophic Lateral Sclerosis Association (ALSA). She is now a Biogen employee.

Kimiko Domoto-Reilly receives research funding from NIA grants P30 AG066509, U19 AG063911, and R01 AG066957, and also from Lawson Health Research Institute and Alzheimer’s Therapeutic Research Institute. She has received speaker fees, unrelated to work presented in this manuscript, from Med Learning Group and MedBridge.

Christina Caso reports no disclosures.

Alyssa Murphy reports no disclosures.

Michael Brickhouse reports no disclosures.

Daisy Hochberg reports no disclosures.

Nikos Makris received funding from grants R21NS079905, R21NS077059, R21EB016449, R01AG042512.

Merit E. Cudkowicz has received consultation fees, unrelated to work presented in this manuscript, from Biogen, Genentech, Cytokinetics, Biohaven, Voyager and Astra Zeneca.

Bradford C. Dickerson has received consultation fees, unrelated to work presented in this manuscript, from Merck, Forum, Ionis, Med Learning Group, Catamount, and Haymarket Medical Media. He also receives royalties from Oxford University Press.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 163 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ratti, E., Domoto-Reilly, K., Caso, C. et al. Regional prefrontal cortical atrophy predicts specific cognitive-behavioral symptoms in ALS-FTD. Brain Imaging and Behavior (2021). https://doi.org/10.1007/s11682-021-00456-1

Download citation

Keywords

  • Magnetic resonance imaging (1)
  • Cerebral cortex (2)
  • Frontotemporal dementia (3)
  • Amyotrophic lateral sclerosis (4)
  • Frontal lobe (5)