Brainstem atrophy in the early stage of Alzheimer’s disease: a voxel-based morphometry study

Abstract

Postmortem studies on patients with Alzheimer’s disease (AD) have confirmed that the dorsal raphe nucleus (DRN) in the brainstem is the first brain structure affected in the earliest stage of AD. The present study examined the brainstem in the early stage of AD using magnetic resonance (MR) imaging. T1-weighted MR images of the brains of 81 subjects were obtained from the publicly available Open Access Series of Imaging Studies (OASIS) database, including 27 normal control (NC) subjects, 27 patients with very mild AD (AD-VM) and 27 patients with mild AD (AD-M). The brainstem was interactively segmented from the MR images using ITK-SNAP. The present voxel-based morphometry (VBM) study was designed to investigate the brainstem differences between the AD-VM/AD-M groups and the NC group. The results showed bilateral loss in the pons and the left part of the midbrain in the AD-M group compared to the NC group. The AD-M group showed greater loss in the left midbrain than the AD-VM group (PFWEcorrected < 0.05). The results revealed that brainstem atrophy occurs in the early stages of AD (Clinical Dementia Rating = 0.5 and 1.0). Most of these findings were also investigated in a multicenter dataset. This is the first VBM study that provides evidence of brainstem alterations in the early stage of AD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    https://www.fil.ion.ucl.ac.uk/spm/

  2. 2.

    https://surfer.nmr.mgh.harvard.edu/

  3. 3.

    www.itksnap.org

  4. 4.

    http://www.oasis-brains.org

  5. 5.

    http://adni.loni.usc.edu

References

  1. Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry-the methods. Neuroimage, 11, 805–821.

    CAS  Article  Google Scholar 

  2. Attems, J., Thomas, A., & Jellinger, K. (2012). Correlations between cortical and subcortical tau pathology. Neuropathology and Applied Neurobiology, 38, 582–590.

    CAS  Article  Google Scholar 

  3. Buckner, R. L., Head, D., Parker, J., Fotenos, A. F., Marcus, D., Morris, J. C., & Snyder, A. Z. (2004). A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. Neuroimage, 23, 724–738.

    Article  Google Scholar 

  4. Busatto, G. F., Diniz, B. S., & Zanetti, M. V. (2008). Voxel-based morphometry in Alzheimer’s disease. Expert Review of Neurotherapeutics, 8, 1691–1702.

    Article  Google Scholar 

  5. Celle, S., Delon-Martin, C., Roche, F., Barthélémy, J. C., Pépin, J. L., & Dojat, M. (2016). Desperately seeking grey matter volume changes in sleep apnea: A methodological review of magnetic resonance brain voxel-based morphometry studies. Sleep Medicine Reviews, 25, 112–120.

    Article  Google Scholar 

  6. Chetelat, G., & Baron, J. C. (2003). Early diagnosis of Alzheimer’s disease: Contribution of structural neuroimaging. NeuroImage, 18, 525–541.

    Article  Google Scholar 

  7. Fischl, B. (2012). Freesurfer. Neuroimage, 62, 774–781.

    Article  Google Scholar 

  8. Fotenos, A. F., Snyder, A. Z., Girton, L. E., Morris, J. C., & Buckner, R. L. (2005). Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology, 64, 1032–1039.

    CAS  Article  Google Scholar 

  9. Grinberg, L., Rüb, U., Ferretti, R., Nitrini, R., Farfel, J., Polichiso, L., Gierga, K., Jacob-Filho, W., Heinsen, H., & Brazilian Brain Bank Study Group. (2009). The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathology and Applied Neurobiology, 35, 406–416.

    CAS  Article  Google Scholar 

  10. Grinberg, L. T., Rueb, U., & Heinsen, H. (2011). Brainstem: Neglected locus in neurodegenerative diseases. Frontiers in Neurology, 2, 42.

    CAS  Article  Google Scholar 

  11. Grudzien, A., Shaw, P., Weintraub, S., Bigio, E., Mash, D. C., & Mesulam, M. M. (2007). Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiology of Aging, 28, 327–335.

    CAS  Article  Google Scholar 

  12. Hellström-Lindahl, E., Viitanen, M., & Marutle, A. (2009). Comparison of Aβ levels in the brain of familial and sporadic Alzheimer’s disease. Neurochemistry International, 55, 243–252.

    Article  Google Scholar 

  13. Hwang, J., Kim, J., Han, Y., & Park, H. (2011). An automatic cerebellum extraction method in T1-weighted brain MR images using an active contour model with a shape prior. Magnetic Resonance Imaging, 29, 1014–1022.

    Article  Google Scholar 

  14. Karas, G., Scheltens, P., Rombouts, S., van Schijndel, R., Klein, M., Jones, B., van der Flier, W., & Barkhof, F. (2007). Precuneus atrophy in early-onset Alzheimer’s disease: a morphometric structural MRI study. Neuroradiology, 49, 967–976.

    Article  Google Scholar 

  15. Kinkingnéhun, S., Sarazin, M., Lehéricy, S., Guichart-Gomez, E., Hergueta, T., & Dubois, B. (2008). VBM anticipates the rate of progression of Alzheimer disease: A 3-year longitudinal study. Neurology, 70, 2201–2211.

    Article  Google Scholar 

  16. Lee, J. H., Ryan, J., Andreescu, C., Aizenstein, H., & Lim, H. K. (2015). Brainstem morphological changes in Alzheimer’s disease. Neuroreport, 26, 411–415.

    Article  Google Scholar 

  17. Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., Morris, J. C., & Buckner, R. L. (2007). Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 19, 1498–1507.

    Article  Google Scholar 

  18. Morris JC (1993) The clinical dementia rating (CDR): Current version and scoring rules. Neurology, 43, 2412b-2414b.

  19. Mrzilková, J., Zach, P., Bartoš, A., Tintěra, J., & Řípová, D. (2012). Volumetric analysis of the pons, cerebellum and hippocampi in patients with Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 34, 224–234.

    Article  Google Scholar 

  20. Mungas, D., Reed, B. R., Jagust, W. J., DeCarli, C., Mack, W. J., Kramer, J. H., Weiner, M. W., Schuff, N., & Chui, H. C. (2002). Volumetric MRI predicts rate of cognitive decline related to AD and cerebrovascular disease. Neurology, 59, 867–873.

    CAS  Article  Google Scholar 

  21. Musa, G., Henríquez, F., Muñoz-Neira, C., Delgado, C., Lillo, P., & Slachevsky, A. (2017). Utility of the neuropsychiatric inventory questionnaire (NPI-Q) in the assessment of a sample of patients with Alzheimer’s disease in Chile. Dement Neuropsychol, 11(2), 129–136.

    Article  Google Scholar 

  22. Paul, A. Y., Joseph, P., Heather, C. H., Rachel, G. S., Sean, H., James, C. G., & Guido, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage, 31, 1116–1128.

    Article  Google Scholar 

  23. Ridgway, G. R., Henley, S. M., Rohrer, J. D., Scahill, R. I., Warren, J. D., & Fox, N. C. (2008). Ten simple rules for reporting voxel-based morphometry studies. NeuroImage, 40, 1429–1435.

    Article  Google Scholar 

  24. Rodríguez, J. J., Noristani, H. N., & Verkhratsky, A. (2012). The serotonergic system in ageing and Alzheimer’s disease. Progress in Neurobiology, 99, 15–41.

    Article  Google Scholar 

  25. Rüb, U., Del, T. K., Schultz, C., Thal, D., Braak, E., & Braak, H. (2000). The evolution of Alzheimer’s disease-related cytoskeletal pathology in the human raphe nuclei. Neuropathology and Applied Neurobiology, 26, 553–567.

    Article  Google Scholar 

  26. Rubin, E. H., Storandt, M., Miller, J. P., Kinscherf, D. A., Grant, E. A., Morris, J. C., & Berg, L. (1998). A prospective study of cognitive function and onset of dementia in cognitively healthy elders. Archives of Neurology, 55, 395–401.

    CAS  Article  Google Scholar 

  27. Samuraki, M., Matsunari, I., Chen, W. P., Yajima, K., Fujikawa, A., Takeda, N., Nishimura, S., Matsuda, H., & Yamada, M. (2007). Partial volume effect-corrected FDG-PET and grey matter volume loss in patients with mild Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging, 34, 1658–1669.

    Article  Google Scholar 

  28. Schuff, N., Woerner, N., Boreta, L., Kornfield, T., Shaw, L., Trojanowski, J., Thompson, P. M., Jack Jr., C. R., Weiner, M. W., & Alzheimer’s Disease Neuroimaging Initiative. (2009). MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain, 132, 1067–1077.

    CAS  Article  Google Scholar 

  29. Shi, F., Liu, B., Zhou, Y., Yu, C., & Jiang, T. (2009). Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: Meta analyses of MRI studies. Hippocampus, 19, 1055–1064.

    Article  Google Scholar 

  30. Tae, W. S., Kim, S. S., Lee, K. U., Nam, E. C., & Kim, K. W. (2008). Validation of hippocampal volumes measured using a manual method and two automated methods (Freesurfer and IBASPM) in chronic major depressive disorder. Neuroradiology, 50, 569–581.

    Article  Google Scholar 

  31. Takao, H., Hayashi, N., & Ohtomo, K. (2014). Effects of study design in multi-scanner voxel-based morphometry studies. NeuroImage, 84, 133–140.

    Article  Google Scholar 

  32. Walhovd, K. B., Fjell, A. M., Reinvang, I., Lundervold, A., Dale, A. M., Eilertsen, D. E., Quinn, B. T., Salat, D., Makris, N., & Fischl, B. (2005). Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiology of Aging, 26, 1261–1270.

    Article  Google Scholar 

  33. Wang, J. Y., Ngo, M. M., Hessl, D., Hagerman, R. J., & Rivera, S. M. (2016). Robust machine learning-based correction on automatic segmentation of the cerebellum and brainstem. PLoS One, 11, e0156123.

    Article  Google Scholar 

  34. Weier, K., Beck, A., Magon, S., Amann, M., Naegelin, Y., Penner, I. K., Thürling, M., Aurich, V., Derfuss, T., Radue, E. W., Stippich, C., Kappos, L., Timmann, D., & Sprenger, T. (2012). Evaluation of a new approach for semi-automatic segmentation of the cerebellum in patients with multiple sclerosis. Journal of Neurology, 259, 2673–2680.

    Article  Google Scholar 

  35. Wilson, R. S., Nag, S., Boyle, P. A., Hizel, L. P., Yu, L., Buchman, A. S., Shah, R. C., Schneider, J. A., Arnold, S. E., & Bennett, D. A. (2013). Brainstem aminergic nuclei and late-life depressive symptoms. JAMA Psychiatry, 70, 1320–1328.

    Article  Google Scholar 

  36. Wright, I. C., McGuire, P. K., Poline, J. B., Travere, J. M., Murray, R. M., Frith, C. D., Frackowiak, R. S., & Friston, K. J. (1995). A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage, 2, 244–252.

    CAS  Article  Google Scholar 

  37. Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization. IEEE Trans. on Medical Imaging, 20, 45–57.

    CAS  Article  Google Scholar 

  38. Zhu, M., Gao, W., Wang, X., Chen, S., & Lin, Z. (2012). Progression of corpus callosum atrophy in early stage of Alzheimer’s disease: MRI based study. Academic Radiology, 19, 512–517.

    Article  Google Scholar 

  39. Zhu, M., Wang, X., Gao, W., Chen, S., Ge, H., Shen, H., & Lin, Z. (2014). Corpus callosum atrophy and cognitive decline in early Alzheimer’s disease: Longitudinal MRI. Dementia and Geriatric Cognitive Disorders, 37, 214–222.

    Article  Google Scholar 

Download references

Funding

This study was founded by the Science and Technology Cooperation Direction Project of Hainan Key Research and Development Plan (grant number ZDYD2019207) and National Natural Science Foundation of China (grant numbers 81171304, 81201150 and 81500924). It was also supported by Sanya Key Laboratory Construction (grant number L1232) and Natural Science Foundation of Hainan Province of China (grant number 20158306). The OASIS dataset used in this work was funded by grants (P50 AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, R01 MH56584). Data used in preparation of this article were obtained from the ADNI database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing this report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Author information

Affiliations

Authors

Consortia

Contributions

Author contributions included conception and study design (Wenpeng Gao and Xiaoguang Chen), data collection or acquisition (Xiaoxi Ji, Hong Zhang and Yingjie He), statistical analysis (Xiaoxi Ji, Hui Wang and Minwei Zhu), interpretation of results (Xiaoxi Ji, Hui Wang, Minwei Zhu, Wenpeng Gao), drafting the manuscript work or revising it critically for important intellectual content (Xiaoxi Ji, Minwei Zhu, Wenpeng Gao, Xiaoguang Chen and Yili Fu) and approval of final version to be published and agreement to be accountable for the integrity and accuracy of all aspects of the work (All authors).

Corresponding authors

Correspondence to Xiaoguang Chen or Wenpeng Gao.

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Wang, H., Zhu, M. et al. Brainstem atrophy in the early stage of Alzheimer’s disease: a voxel-based morphometry study. Brain Imaging and Behavior 15, 49–59 (2021). https://doi.org/10.1007/s11682-019-00231-3

Download citation

Keywords

  • Brainstem
  • Magnetic resonance imaging
  • Voxel-based morphometry
  • Alzheimer’s disease