Frequency-dependent changes in fractional amplitude of low-frequency oscillations in Alzheimer’s disease: a resting-state fMRI study

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disease in elderly individuals. We conducted this study to examine whether alterations in the fractional amplitudes of low-frequency fluctuations (fALFF) in the AD spectrum were frequency-dependent and symptom-relevant. A total of 43 patients with subjective cognitive decline (SCD), 52 with amnestic mild cognitive impairment (aMCI), 44 with Alzheimer’s dementia (d-AD) and 55 well-matched controls participated in resting-state functional magnetic resonance imaging (rs-fMRI) scans. The amplitudes were measured using fALFF within the slow-4 (0.027–0.073 Hz) and slow-5 (0.01–0.027 Hz) bands. Repeated-measures analysis of variance was performed on fALFF within two bands and correlated with neuropsychological test scores. The significant main effects of frequency and group on fALFF differed widely across brain regions. There were more varied areas in the slow-5 band than the slow-4 band. The fALFF associated with primary disease effects was mainly distributed in the parietal lobe. Obvious frequency band and group interaction effects were observed in the left angular gyrus, left calcarine fissure and surrounding cortex, left superior cerebellum, left cuneus and right lingual gyrus. Neuropsychological tests scores were significantly correlated with the fALFF magnitude of the left cuneus and right lingual in the slow-5 band. Our results suggested that the AD continuum had abnormal amplitudes in intrinsic brain activity, and these abnormalities were frequency-dependent and mainly associated with the slow-5 band rather than the slow-4 band. This may guide the frequency choice of future rs-fMRI studies and provide new insights into the neuropathophysiology of AD.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Backman, L., Almkvist, O., Nyberg, L., & Andersson, J. (2000). Functional changes in brain activity during priming in Alzheimer's disease. Journal of Cognitive Neuroscience, 12(1), 134–141. https://doi.org/10.1162/089892900561922.

  2. Bansal, R., & Peterson, B. S. (2018). Cluster-level statistical inference in fMRI datasets: The unexpected behavior of random fields in high dimensions. Magnetic Resonance Imaging, 49, 101–115. https://doi.org/10.1016/j.mri.2018.01.004.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Birn, R. M. (2012). The role of physiological noise in resting-state functional connectivity. Neuroimage, 62(2), 864–870. https://doi.org/10.1016/j.neuroimage.2012.01.016.

    Article  PubMed  Google Scholar 

  4. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541. https://doi.org/10.1002/mrm.1910340409.

    CAS  Article  PubMed  Google Scholar 

  5. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. https://doi.org/10.1196/annals.1440.011.

    Article  PubMed  Google Scholar 

  6. Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1929. https://doi.org/10.1126/science.1099745.

    CAS  Article  PubMed  Google Scholar 

  7. Calhoun, V. D., Kiehl, K. A., & Pearlson, G. D. (2008). Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Human Brain Mapping, 29(7), 828–838. https://doi.org/10.1002/hbm.20581.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Calhoun, V. D., Sui, J., Kiehl, K., Turner, J., Allen, E., & Pearlson, G. (2011). Exploring the psychosis functional connectome: Aberrant intrinsic networks in schizophrenia and bipolar disorder. Frontiers in Psychiatry, 2, 75. https://doi.org/10.3389/fpsyt.2011.00075.

    Article  PubMed  Google Scholar 

  9. Chang, M., Edmiston, E. K., Womer, F. Y., Thou, Q., Wei, S. N., Jiang, M. W., et al. (2019). Spontaneous low-frequency fluctuations in the neural system for emotional perception in major psychiatric disorders: Amplitude similarities and differences across frequency bands. [article]. Journal of Psychiatry & Neuroscience, 44(2), 132–141. https://doi.org/10.1503/jpn.170226.

    Article  Google Scholar 

  10. Cho, H., Seo, S. W., Kim, J. H., Suh, M. K., Lee, J. H., Choe, Y. S., Lee, K. H., Kim, J. S., Kim, G. H., Noh, Y., Ye, B. S., Kim, H. J., Yoon, C. W., Chin, J., & Na, D. L. (2013). Amyloid deposition in early onset versus late onset Alzheimer's disease. Journal of Alzheimer's Disease, 35(4), 813–821. https://doi.org/10.3233/JAD-121927.

    CAS  Article  PubMed  Google Scholar 

  11. Ding, B., Ling, H. W., Zhang, Y., Huang, J., Zhang, H., Wang, T., et al. (2014). Pattern of cerebral hyperperfusion in Alzheimer's disease and amnestic mild cognitive impairment using voxel-based analysis of 3D arterial spin-labeling imaging: Initial experience. Clinical Interventions in Aging, 9, 493–500. https://doi.org/10.2147/CIA.S58879.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dozeman, E., van Schaik, D. J., van Marwijk, H. W., Stek, M. L., van der Horst, H. E., & Beekman, A. T. (2011). The center for epidemiological studies depression scale (CES-D) is an adequate screening instrument for depressive and anxiety disorders in a very old population living in residential homes. International Journal of Geriatric Psychiatry, 26(3), 239–246. https://doi.org/10.1002/gps.2519.

    Article  PubMed  Google Scholar 

  13. Forster, S., Yousefi, B. H., Wester, H. J., Klupp, E., Rominger, A., Forstl, H., et al. (2012). Quantitative longitudinal interrelationships between brain metabolism and amyloid deposition during a 2-year follow-up in patients with early Alzheimer's disease. European Journal of Nuclear Medicine and Molecular Imaging, 39(12), 1927–1936. https://doi.org/10.1007/s00259-012-2230-9.

    CAS  Article  PubMed  Google Scholar 

  14. Friston, K. J., Worsley, K. J., Frackowiak, R. S., Mazziotta, J. C., & Evans, A. C. (1994). Assessing the significance of focal activations using their spatial extent. Human Brain Mapping, 1(3), 210–220. https://doi.org/10.1002/hbm.460010306.

    CAS  Article  PubMed  Google Scholar 

  15. Gao, L., Bai, L., Zhang, Y., Dai, X. J., Netra, R., Min, Y., Zhou, F., Niu, C., Dun, W., Gong, H., & Zhang, M. (2015). Frequency-dependent changes of local resting oscillations in sleep-deprived brain. PLoS One, 10(3), e0120323. https://doi.org/10.1371/journal.pone.0120323.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Guo, Q. H., Sun, Y. T., Yu, P. M., Hong, Z., & Lv, C. Z. (2007). Norm of auditory verbal learning test in the normal aged in Chinese community. Chinese Journal of Clinical Psychology, 15(2):132–134

  17. Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry, 23, 56–62. https://doi.org/10.1136/jnnp.23.1.56.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Han, Y., Wang, J., Zhao, Z., Min, B., Lu, J., Li, K., He, Y., & Jia, J. (2011). Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: A resting-state fMRI study. Neuroimage, 55(1), 287–295. https://doi.org/10.1016/j.neuroimage.2010.11.059.

    Article  PubMed  Google Scholar 

  19. He, Y., Wang, L., Zang, Y., Tian, L., Zhang, X., Li, K., & Jiang, T. (2007). Regional coherence changes in the early stages of Alzheimer's disease: A combined structural and resting-state functional MRI study. Neuroimage, 35(2), 488–500. https://doi.org/10.1016/j.neuroimage.2006.11.042.

    Article  PubMed  Google Scholar 

  20. Hong, J. Y., Kilpatrick, L. A., Labus, J., Gupta, A., Jiang, Z., Ashe-McNalley, C., Stains, J., Heendeniya, N., Ebrat, B., Smith, S., Tillisch, K., Naliboff, B., & Mayer, E. A. (2013). Patients with chronic visceral pain show sex-related alterations in intrinsic oscillations of the resting brain. The Journal of Neuroscience, 33(29), 11994–12002. https://doi.org/10.1523/jneurosci.5733-12.2013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Hong, Y. J., Yoon, B., Shim, Y. S., Ahn, K. J., Yang, D. W., & Lee, J. H. (2015). Gray and white matter degenerations in subjective memory impairment: Comparisons with Normal controls and mild cognitive impairment. [article]. Journal of Korean Medical Science, 30(11), 1652–1658. https://doi.org/10.3346/jkms.2015.30.11.1652.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hou, Y., Wu, X., Hallett, M., Chan, P., & Wu, T. (2014). Frequency-dependent neural activity in Parkinson's disease. Human Brain Mapping, 35(12), 5815–5833. https://doi.org/10.1002/hbm.22587.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hutcheon, B., & Yarom, Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in Neurosciences, 23(5), 216–222. https://doi.org/10.1016/s0166-2236(00)01547-2.

    CAS  Article  PubMed  Google Scholar 

  24. Jessen, F., Amariglio, R. E., van Boxtel, M., Breteler, M., Ceccaldi, M., Chetelat, G., et al. (2014). A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. Alzheimers Dement, 10(6), 844–852. https://doi.org/10.1016/j.jalz.2014.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kang, D. W., Choi, W. H., Jung, W. S., Um, Y. H., Lee, C. U., & Lim, H. K. (2017). Impact of amyloid burden on regional functional synchronization in the cognitively Normal older adults. Scientific Reports, 7(1), 14690. https://doi.org/10.1038/s41598-017-15001-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Knyazev, G. G. (2007). Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neuroscience and Biobehavioral Reviews, 31(3), 377–395. https://doi.org/10.1016/j.neubiorev.2006.10.004.

    Article  PubMed  Google Scholar 

  27. Li, C., Liu, C., Yin, X., Yang, J., Gui, L., Wei, L., & Wang, J. (2014). Frequency-dependent changes in the amplitude of low-frequency fluctuations in subcortical ischemic vascular disease (SIVD): A resting-state fMRI study. Behavioural Brain Research, 274, 205–210. https://doi.org/10.1016/j.bbr.2014.08.019.

    Article  PubMed  Google Scholar 

  28. Li, Y., Jing, B., Liu, H., Li, Y., Gao, X., Li, Y., Mu, B., Yu, H., Cheng, J., Barker, P. B., Wang, H., & Han, Y. (2017). Frequency-dependent changes in the amplitude of low-frequency fluctuations in mild cognitive impairment with mild depression. Journal of Alzheimer's Disease, 58(4), 1175–1187. https://doi.org/10.3233/JAD-161282.

    CAS  Article  PubMed  Google Scholar 

  29. Liang, P., Xiang, J., Liang, H., Qi, Z., Li, K., & Alzheimer's Disease NeuroImaging, I. (2014). Altered amplitude of low-frequency fluctuations in early and late mild cognitive impairment and Alzheimer's disease. Current Alzheimer Research, 11(4), 389–398. https://doi.org/10.2174/1567205011666140331225335.

    CAS  Article  PubMed  Google Scholar 

  30. Liu, X., Wang, S., Zhang, X., Wang, Z., Tian, X., & He, Y. (2014). Abnormal amplitude of low-frequency fluctuations of intrinsic brain activity in Alzheimer's disease. Journal of Alzheimer's Disease, 40(2), 387–397. https://doi.org/10.3233/jad-131322.

    Article  PubMed  Google Scholar 

  31. Llinas, R. R. (1988). The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science, 242(4886), 1654–1664. https://doi.org/10.1126/science.3059497.

    CAS  Article  PubMed  Google Scholar 

  32. Lu, J., Li, D., Li, F., Zhou, A., Wang, F., Zuo, X., Jia, X. F., Song, H., & Jia, J. (2011). Montreal cognitive assessment in detecting cognitive impairment in Chinese elderly individuals: A population-based study. Journal of Geriatric Psychiatry and Neurology, 24(4), 184–190. https://doi.org/10.1177/0891988711422528.

    Article  PubMed  Google Scholar 

  33. Ma, X., Li, Z., Jing, B., Liu, H., Li, D., Li, H., & the Alzheimer’s Disease Neuroimaging Initiative. (2016). Identify the atrophy of Alzheimer's Disease, mild cognitive impairment and Normal aging using morphometric MRI analysis. Frontiers in Aging Neuroscience, 8, 243. https://doi.org/10.3389/fnagi.2016.00243.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mascali, D., DiNuzzo, M., Gili, T., Moraschi, M., Fratini, M., Maraviglia, B., Serra, L., Bozzali, M., & Giove, F. (2015). Intrinsic patterns of coupling between correlation and amplitude of low-frequency fMRI fluctuations are disrupted in degenerative dementia mainly due to functional disconnection. PLoS One, 10(4), e0120988. https://doi.org/10.1371/journal.pone.0120988.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. McDade, E., & Bateman, R. J. (2017). Stop Alzheimer's before it starts. Nature, 547(7662), 153–155. https://doi.org/10.1038/547153a.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Jr., Kawas, C. H., Klunk, W. E., Koroshetz, W. J., Manly, J. J., Mayeux, R., Mohs, R. C., Morris, J. C., Rossor, M. N., Scheltens, P., Carrillo, M. C., Thies, B., Weintraub, S., & Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 263–269. https://doi.org/10.1016/j.jalz.2011.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Morris, J. C. (1993). The clinical dementia rating (CDR): Current version and scoring rules. Neurology, 43(11), 2412–2414. https://doi.org/10.1212/WNL.43.11.2412-a.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Pan, P., Zhu, L., Yu, T., Shi, H., Zhang, B., Qin, R., Zhu, X., Qian, L., Zhao, H., Zhou, H., & Xu, Y. (2017). Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive impairment: A meta-analysis of resting-state fMRI studies. Ageing Research Reviews, 35, 12–21. https://doi.org/10.1016/j.arr.2016.12.001.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Penttonen, M., & Buzsaki, G. (2003). Natural logarithmic relationship between brain oscillators. [article]. Thalamus & Related Systems, 2(2), 145–152. https://doi.org/10.1016/s1472-9288(03)00007-4.

    Article  Google Scholar 

  40. Peraza, L. R., Colloby, S. J., Deboys, L., O'Brien, J. T., Kaiser, M., & Taylor, J. P. (2016). Regional functional synchronizations in dementia with Lewy bodies and Alzheimer's disease. International Psychogeriatrics, 28(7), 1143–1151. https://doi.org/10.1017/S1041610216000429.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Power, J. D., Plitt, M., Laumann, T. O., & Martin, A. (2017). Sources and implications of whole-brain fMRI signals in humans. Neuroimage, 146, 609–625. https://doi.org/10.1016/j.neuroimage.2016.09.038.

    Article  PubMed  Google Scholar 

  42. Prvulovic, D., Hubl, D., Sack, A. T., Melillo, L., Maurer, K., Frolich, L., et al. (2002). Functional imaging of visuospatial processing in Alzheimer's disease. Neuroimage, 17(3), 1403–1414. https://doi.org/10.1006/nimg.2002.1271.

    CAS  Article  PubMed  Google Scholar 

  43. Rabin, L. A., Smart, C. M., & Amariglio, R. E. (2017). Subjective cognitive decline in preclinical Alzheimer's Disease. Annual Review of Clinical Psychology, 13, 369–396. https://doi.org/10.1146/annurev-clinpsy-032816-045136.

    Article  PubMed  Google Scholar 

  44. Riederer, I., Bohn, K. P., Preibisch, C., Wiedemann, E., Zimmer, C., Alexopoulos, P., & Förster, S. (2018). Alzheimer Disease and mild cognitive impairment: Integrated pulsed arterial spin-labeling MRI and (18)F-FDG PET. Radiology, 288(1), 198–206. https://doi.org/10.1148/radiol.2018170575.

    Article  PubMed  Google Scholar 

  45. Risacher, S. L., Kim, S., Shen, L., Nho, K., Foroud, T., Green, R. C., et al. (2013). The role of apolipoprotein E (APOE) genotype in early mild cognitive impairment (E-MCI). Frontiers in Aging Neuroscience, 5, 11. https://doi.org/10.3389/fnagi.2013.00011.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Scarmeas, N., Anderson, K. E., Hilton, J., Park, A., Habeck, C., Flynn, J., Tycko, B., & Stern, Y. (2004). APOE-dependent PET patterns of brain activation in Alzheimer disease. Neurology, 63(5), 913–915. https://doi.org/10.1212/01.WNL.0000137274.93125.46

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Seo, E. H., Lee, D. Y., Lee, J. M., Park, J. S., Sohn, B. K., Choe, Y. M., Byun, M. S., Choi, H. J., & Woo, J. I. (2013). Influence of APOE genotype on whole-brain functional networks in cognitively normal elderly. PLoS One, 8(12), e83205. https://doi.org/10.1371/journal.pone.0083205.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Silverman, D. H., Small, G. W., Chang, C. Y., Lu, C. S., Kung De Aburto, M. A., Chen, W., et al. (2001). Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. JAMA, 286(17), 2120–2127. https://doi.org/10.1001/jama.286.17.2120.

    CAS  Article  PubMed  Google Scholar 

  49. Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., Iwatsubo, T., Jack, C. R., Jr., Kaye, J., Montine, T. J., Park, D. C., Reiman, E. M., Rowe, C. C., Siemers, E., Stern, Y., Yaffe, K., Carrillo, M. C., Thies, B., Morrison-Bogorad, M., Wagster, M. V., & Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 280–292. https://doi.org/10.1016/j.jalz.2011.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang, Z., Jia, X., Liang, P., Qi, Z., Yang, Y., Zhou, W., & Li, K. (2012). Changes in thalamus connectivity in mild cognitive impairment: Evidence from resting state fMRI. European Journal of Radiology, 81(2), 277–285. https://doi.org/10.1016/j.ejrad.2010.12.044.

    Article  PubMed  Google Scholar 

  51. Wei, L., Duan, X., Zheng, C., Wang, S., Gao, Q., Zhang, Z., Lu, G., & Chen, H. (2014). Specific frequency bands of amplitude low-frequency oscillation encodes personality. Human Brain Mapping, 35(1), 331–339. https://doi.org/10.1002/hbm.22176.

    Article  PubMed  Google Scholar 

  52. Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4(1), 58–73.

    CAS  Article  PubMed  Google Scholar 

  53. Xue, S. W., Li, D., Weng, X. C., Northoff, G., & Li, D. W. (2014). Different neural manifestations of two slow frequency bands in resting functional magnetic resonance imaging: A systemic survey at regional, interregional, and network levels. Brain Connectivity, 4(4), 242–255. https://doi.org/10.1089/brain.2013.0182.

    Article  PubMed  Google Scholar 

  54. Yan, T., Wang, W., Yang, L., Chen, K., Chen, R., & Han, Y. (2018). Rich club disturbances of the human connectome from subjective cognitive decline to Alzheimer's disease. Theranostics, 8(12), 3237–3255. https://doi.org/10.7150/thno.23772.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yang, C., Sun, X., Tao, W., Li, X., Zhang, J., Jia, J., Chen, K., & Zhang, Z. (2016). Multistage grading of amnestic mild cognitive impairment: The associated brain gray matter volume and cognitive behavior characterization. Frontiers in Aging Neuroscience, 8, 332. https://doi.org/10.3389/fnagi.2016.00332.

    Article  PubMed  Google Scholar 

  56. Yang, L., Yan, Y., Wang, Y., Hu, X., Lu, J., Chan, P., Yan, T., & Han, Y. (2018). Gradual disturbances of the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF in Alzheimer Spectrum. Frontiers in Neuroscience, 12.:975 https://doi.org/10.3389/fnins.2018.00975.

  57. Yue, Y., Jia, X., Hou, Z., Zang, Y., & Yuan, Y. (2015). Frequency-dependent amplitude alterations of resting-state spontaneous fluctuations in late-onset depression. BioMed Research International, 2015, 505479–505479. https://doi.org/10.1155/2015/505479.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., et al. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. [article]. Brain & Development, 29(2), 83–91. https://doi.org/10.1016/j.braindev.2006.07.002.

    Article  Google Scholar 

  59. Zhang, Z., Hong, X., & Hui, L. I. (1999). The minimental state examination in the Chinese residents population aged 55 years and over in the urban and rural areas of Beijing. Chinese Journal of Neurology, 32, 149–153.

  60. Zhao, W. N., Wang, X. T., Yin, C. H., He, M. F., Li, S. Y., & Han, Y. (2019). Trajectories of the hippocampal subfields atrophy in the Alzheimer's Disease: A structural imaging study. Frontiers in Neuroinformatics, 13, 9. https://doi.org/10.3389/fninf.2019.00013.

    Article  Google Scholar 

  61. Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., Cao, Q. J., Wang, Y. F., & Zang, Y. F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. Journal of Neuroscience Methods, 172(1), 137–141. https://doi.org/10.1016/j.jneumeth.2008.04.012.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zuo, X. N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., et al. (2010). The oscillating brain: Complex and reliable. Neuroimage, 49(2), 1432–1445. https://doi.org/10.1016/j.neuroimage.2009.09.037.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This article was supported by the National Key Research and Development Program of China (2016YFC1306300, 2016YFC0103000, 2017YFB1002504); the National Natural Science Foundation of China (Grants 61633018, 81430037,81471731, 31371007, 81671776, 61727807, 81522021, 81801052); Beijing Municipal Nature Science Foundation (7161009, 7132147); the Beijing Municipal Commission of Health and Family Planning (PXM2019_026283_000002); the Beijing Nova Program (Grant No. Z171100001117057, Z191100010618004); the Beijing Municipal Science & Technology Commission; and China Postdoctoral Science Foundation (2018 M641414).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tianyi Yan or Ying Han.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The research was authorized by the Medical Research Ethics Committee and the Institutional Review Board of Xuanwu Hospital, Beijing, China.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 6582 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yan, Y., Li, Y. et al. Frequency-dependent changes in fractional amplitude of low-frequency oscillations in Alzheimer’s disease: a resting-state fMRI study. Brain Imaging and Behavior 14, 2187–2201 (2020). https://doi.org/10.1007/s11682-019-00169-6

Download citation

Keywords

  • Alzheimer’s disease
  • Subjective cognitive decline
  • Resting-state functional MRI
  • fALFF
  • Frequency dependence