Association between personality and tau-PET binding in cognitively normal older adults

Abstract

Personality traits such as Neuroticism and Conscientiousness are associated with Alzheimer disease (AD) pathophysiology in cognitively normal (CN) and impaired individuals, and may represent potential risk or resilience factors, respectively. This study examined the cross-sectional relationship between personality traits and regional tau deposition using positron emission tomography (PET) in cognitively normal older adults. A cohort of CN (Clinical Dementia Rating (CDR) 0, n = 128) older adults completed the NEO Five-Factor Inventory to assess traits of Neuroticism, Extroversion, Openness, Agreeableness, and Conscientiousness and underwent tau-PET and β-amyloid (Aβ)-PET imaging. We utilized linear regression models, adjusting for age, sex, geriatric depression score, and Aβ to evaluate the association between each of the personality traits and regional tau-PET accumulation. Elevated Neuroticism scores were associated with higher tau-PET accumulation in the amygdala (p = .002), entorhinal cortex (p = .012), and inferior temporal cortex (p = .016), as well as with a composite tau-PET measure (p = .002). In contrast, Extroversion, Openness, Agreeableness, and Conscientiousness were not associated with tau deposition in any of these regions (p’s > 0.160). Our results indicate that increased Neuroticism is associated with higher tau pathophysiology in regions known to be vulnerable to AD pathophysiology in CN participants. High Neuroticism scores may therefore serve as a potential risk factor for tau accumulation. Alternatively, personality can change with the onset of AD, thus increased tau levels may affect Neuroticism scores. While future longitudinal studies are needed to determine directionality, our findings suggest early associations between Neuroticism and tau accumulation in CN adults.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Data availability

Data that support the findings of this study are available from the Knight ADRC at https://knightadrc.wustl.edu/Research/ResourceRequest.htm.

References

  1. Aschenbrenner, A. J., Gordon, B. A., Benzinger, T. L. S., Morris, J. C., & Hassenstab, J. J. (2018). Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease. Neurology, 91(9), e859–e866. https://doi.org/10.1212/WNL.0000000000006075.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Balsis, S., Carpenter, B. D., & Storandt, M. (2005). Personality change precedes clinical diagnosis of dementia of the Alzheimer type. The Journals of Gerontology: Series B, 60(2), P98–P101. https://doi.org/10.1093/geronb/60.2.P98.

    Article  Google Scholar 

  3. Brier, M. R., Gordon, B., Friedrichsen, K., McCarthy, J., Stern, A., Christensen, J., … Ances, B. M. (2016a). Tau and Abeta imaging, CSF measures, and cognition in Alzheimer's disease. Sci Transl Med, 8(338), 338ra366. https://doi.org/10.1126/scitranslmed.aaf2362.

  4. Brummett, B. H., Babyak, M. A., Williams, R. B., Barefoot, J. C., Costa, P. T., & Siegler, I. C. (2006). NEO personality domains and gender predict levels and trends in body mass index over 14 years during midlife. Journal of Research in Personality, 40(3), 222–236. https://doi.org/10.1016/j.jrp.2004.12.002.

    Article  Google Scholar 

  5. Chioqueta, A. P., & Stiles, T. C. (2005). Personality traits and the development of depression, hopelessness, and suicide ideation. Personality and Individual Differences, 38(6), 1283–1291. https://doi.org/10.1016/j.paid.2004.08.010.

    Article  Google Scholar 

  6. Costa, P. T., & McCrae, R. R. (1992a). Four ways five factors are basic. Personality and Individual Differences, 13(6), 653–665. https://doi.org/10.1016/0191-8869(92)90236-I.

    Article  Google Scholar 

  7. Costa, P. T., & McCrae, R. R. (1992b). NEO PI-R professional manual. Odessa: Psychological Assessment Resources.

    Google Scholar 

  8. Costa, P. J., & RR, M. (1988). Personality in adulthood: A six-year longitudinal study of self-reports and spouse ratings on the NEO personality inventory. Journal of Personality and Social Psychology, 54(5), 853–863.

    Article  PubMed  Google Scholar 

  9. Dawson, D. V., Welsh-Bohmer, K. A., & Siegler, I. C. (2000). Premorbid personality predicts level of rated personality change in patients with Alzheimer disease. Alzheimer Disease and Associated Disorders, 14(1), 11–19.

    CAS  Article  PubMed  Google Scholar 

  10. Donnellan, M. B., & Lucas, R. E. (2008). Age differences in the big five across the life span: Evidence from two national samples. Psychology and Aging, 23(3), 558–566. https://doi.org/10.1037/a0012897.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Duchek, J. M., Balota, D. A., Storandt, M., & Larsen, R. (2007). The power of personality in discriminating between healthy aging and early-stage Alzheimer's disease. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 62(6), P353–P361.

    Article  PubMed  Google Scholar 

  12. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., … Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.

  13. Friedman, H. S., Tucker, J. S., Tomlinson-Keasey, C., Schwartz, J. E., Wingard, D. L., & Criqui, M. H. (1993). Does childhood personality predict longevity? Journal of Personality and Social Psychology, 65(1), 176–185. https://doi.org/10.1037/0022-3514.65.1.176.

    CAS  Article  PubMed  Google Scholar 

  14. Gordon, B. A., Friedrichsen, K., Brier, M., Blazey, T., Su, Y., Christensen, J., Aldea, P., McConathy, J., Holtzman, D. M., Cairns, N. J., Morris, J. C., Fagan, A. M., Ances, B. M., & Benzinger, T. L. (2016). The relationship between cerebrospinal fluid markers of Alzheimer pathology and positron emission tomography tau imaging. Brain, 139(Pt 8), 2249–2260. https://doi.org/10.1093/brain/aww139.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Herman, J. P., McKlveen, J. M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., … Myers, B. (2016). Regulation of the hypothalamic-pituitary-adrenocortical stress response. Comprehensive Physiology, 6(2), 603–621. https://doi.org/10.1002/cphy.c150015.

  16. Jackson, J., Balota, D. A., & Head, D. (2011). Exploring the relationship between personality and regional brain volume in healthy aging. Neurobiology of Aging, 32(12), 2162–2171. https://doi.org/10.1016/j.neurobiolaging.2009.12.009.

    Article  PubMed  Google Scholar 

  17. John, O. P., & Srivastava, S. (1999). The big five trait taxonomy: History, measurement, and theoretical perspectives. In Handbook of personality: Theory and research (2nd ed., pp. 102–138). New York: Guilford Press.

    Google Scholar 

  18. Johnson, K. A., Schultz, A., Betensky, R. A., Becker, J. A., Sepulcre, J., Rentz, D., Mormino, E., Chhatwal, J., Amariglio, R., Papp, K., Marshall, G., Albers, M., Mauro, S., Pepin, L., Alverio, J., Judge, K., Philiossaint, M., Shoup, T., Yokell, D., Dickerson, B., Gomez-Isla, T., Hyman, B., Vasdev, N., & Sperling, R. (2016). Tau positron emission tomographic imaging in aging and early Alzheimer disease. Annals of Neurology, 79(1), 110–119. https://doi.org/10.1002/ana.24546.

    Article  PubMed  Google Scholar 

  19. Mishra, S., Gordon, B. A., Su, Y., Christensen, J., Friedrichsen, K., Jackson, K., Hornbeck, R., Balota, D. A., Cairns, N. J., Morris, J. C., Ances, B. M., & Benzinger, T. L. S. (2017). AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: Defining a summary measure. Neuroimage., 161, 171–178. https://doi.org/10.1016/j.neuroimage.2017.07.050.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Morris, J. C. (1997). Clinical dementia rating: A reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. International Psychogeriatrics, 9(Suppl 1), 173–176 discussion 177-178.

    Article  PubMed  Google Scholar 

  21. Petry, S., Cummings, J. L., Hill, M., & Shapira, J. (1988). Personality alterations in dementia of the alzheimer type. Archives of Neurology, 45(11), 1187–1190. https://doi.org/10.1001/archneur.1988.00520350025009.

    CAS  Article  PubMed  Google Scholar 

  22. Poeggel, G., Helmeke, C., Abraham, A., Schwabe, T., Friedrich, P., & Braun, K. (2003). Juvenile emotional experience alters synaptic composition in the rodent cortex, hippocampus, and lateral amygdala. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 16137–16142. https://doi.org/10.1073/pnas.2434663100.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Radley, J. J., & Morrison, J. H. (2005). Repeated stress and structural plasticity in the brain. Ageing Research Reviews, 4(2), 271–287. https://doi.org/10.1016/j.arr.2005.03.004.

    Article  PubMed  Google Scholar 

  24. Rhodes, R. E., & Smith, N. E. (2006). Personality correlates of physical activity: A review and meta-analysis. British Journal of Sports Medicine, 40(12), 958–965. https://doi.org/10.1136/bjsm.2006.028860.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Schultz, S. A., Gordon, B. A., Mishra, S., Su, Y., Perrin, R. J., Cairns, N. J., Morris, J. C., Ances, B. M., & Benzinger, T. L. S. (2018). Widespread distribution of tauopathy in preclinical Alzheimer's disease. Neurobiology of Aging, 72, 177–185. https://doi.org/10.1016/j.neurobiolaging.2018.08.022.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Su, Y., D'Angelo, G. M., Vlassenko, A. G., Zhou, G., Snyder, A. Z., Marcus, D. S., Blazey, T. M., Christensen, J. J., Vora, S., Morris, J. C., Mintun, M. A., & Benzinger, T. L. (2013). Quantitative analysis of PiB-PET with FreeSurfer ROIs. PLoS One, 8(11), e73377. https://doi.org/10.1371/journal.pone.0073377.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Su, Y., Blazey, T. M., Snyder, A. Z., Raichle, M. E., Marcus, D. S., Ances, B. M., et al. (2015). Partial volume correction in quantitative amyloid imaging. Neuroimage, 107, 55–64. https://doi.org/10.1016/j.neuroimage.2014.11.058.

    CAS  Article  PubMed  Google Scholar 

  28. Su, Y., Blazey, T. M., Owen, C. J., Christensen, J. J., Friedrichsen, K., Joseph-Mathurin, N., … Dominantly Inherited Alzheimer, N. (2016). Quantitative amyloid imaging in autosomal dominant Alzheimer's disease: Results from the DIAN study group. PLoS One, 11(3), e0152082. https://doi.org/10.1371/journal.pone.0152082.

  29. Tautvydaite, D., Antonietti, J. P., Henry, H., von Gunten, A., & Popp, J. (2017). Relations between personality changes and cerebrospinal fluid biomarkers of Alzheimer's disease pathology. Journal of Psychiatric Research, 90, 12–20. https://doi.org/10.1016/j.jpsychires.2016.12.024.

    CAS  Article  PubMed  Google Scholar 

  30. Terracciano, A., McCrae, R. R., Brant, L. J., & Costa, P. T. (2005). Hierarchical linear modeling analyses of the NEO-PI-R scales in the Baltimore longitudinal study of aging. Psychology and Aging, 20(3), 493–506. https://doi.org/10.1037/0882-7974.20.3.493.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Terracciano, A., Sutin, A. R., An, Y., O'Brien, R. J., Ferrucci, L., Zonderman, A. B., & Resnick, S. M. (2014). Personality and risk of Alzheimer's disease: New data and meta-analysis. Alzheimer's & Dementia, 10(2), 179–186. https://doi.org/10.1016/j.jalz.2013.03.002.

    Article  Google Scholar 

  32. Terracciano, A., An, Y., Sutin, A. R., Thambisetty, M., & Resnick, S. M. (2017). Personality change in the preclinical phase of Alzheimer disease. JAMA Psychiatry, 74(12), 1259–1265. https://doi.org/10.1001/jamapsychiatry.2017.2816.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Valli, I., Crossley, N. A., Day, F., Stone, J., Tognin, S., Mondelli, V., Howes, O., Valmaggia, L., Pariante, C., & McGuire, P. (2016). HPA-axis function and grey matter volume reductions: Imaging the diathesis-stress model in individuals at ultra-high risk of psychosis. Translational Psychiatry, 6, e797. https://doi.org/10.1038/tp.2016.68https://www.nature.com/articles/tp201668#supplementary-information.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Wang, L., Benzinger, T. L., Su, Y., Christensen, J., Friedrichsen, K., Aldea, P., McConathy, J., Cairns, N. J., Fagan, A. M., Morris, J. C., & Ances, B. M. (2016). Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between beta-amyloid and Tauopathy. JAMA Neurology, 73(9), 1070–1077. https://doi.org/10.1001/jamaneurol.2016.2078.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wilson, R. S., Schneider, J. A., Arnold, S. E., Bienias, J. L., & Bennett, D. A. (2007). Conscientiousness and the incidence of alzheimer disease and mild cognitive impairment. Archives of General Psychiatry, 64(10), 1204–1212. https://doi.org/10.1001/archpsyc.64.10.1204.

    Article  PubMed  Google Scholar 

  36. Zufferey, V., Donati, A., Popp, J., Meuli, R., Rossier, J., Frackowiak, R., Draganski, B., von Gunten, A., & Kherif, F. (2017). Neuroticism, depression, and anxiety traits exacerbate the state of cognitive impairment and hippocampal vulnerability to Alzheimer's disease. Alzheimers Dement (Amst), 7, 107–114. https://doi.org/10.1016/j.dadm.2017.05.002.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Fred Simmons and Olga Mohan, the Charles F. and Joanne Knight Alzheimer’s Research Initiative, the Hope Center for Neurological Disorders, the Mallinckrodt Institute of Radiology, the American Society for Neuroradiology, and the Barnes-Jewish Hospital Foundation (BJHF), the Paula and Rodger Riney Fund, the BJHF Willman Scholar Fund, and the Daniel J Brennan MD Fund. This research was additionally funded by BrightFocus Foundation grants A2017272S and A2017330S; Alzheimer’s Association Research Grant AARG -17-532945; Arizona Alzheimer’s Research Consortium; National Science Foundation grant DGE-1745038; and National Institutes of Health grants P50AG005681, P01AG026276, P01AG003991, R01AG055444, R01AG031581, UL1TR000448, R01EB009352, 1P30NS098577, and K01AG053474-01A1. Avid Radiopharmaceuticals (a wholly owned subsidiary of Eli Lilly) provided doses of 18Fflorbetapir, partial funding for 18F-florbetapir scanning, precursor for 18F-flortaucipir, and technology transfer for manufacturing of 18F-flortaucipir. The authors thank their participants, without whom this study would not have been possible.

Funding

The authors acknowledge the financial support of Fred Simmons and Olga Mohan, the Charles F. and Joanne Knight Alzheimer’s Research Initiative, the Hope Center for Neurological Disorders, the Mallinckrodt Institute of Radiology, the American Society for Neuroradiology, and the Barnes-Jewish Hospital Foundation (BJHF), the BJHF Paula and Rodger O. Riney Fund, the BJHF Willman Scholar Fund, and the Daniel J Brennan Fund. This research was additionally funded by BrightFocus Foundation grants A2017272S and A2017330S; Alzheimer’s Association Research Grant AARG -17-532945; Arizona Alzheimer’s Research Consortium; National Science Foundation grant DGE-1745038; and National Institutes of Health grants P50AG005681, P01AG026276, P01AG003991, R01AG055444, R01AG031581, UL1TR000448, R01EB009352, 1P30NS098577, and K01AG053474-01A1. Avid Radiopharmaceuticals (a wholly owned subsidiary of Eli Lilly) provided doses of 18F-florbetapir, partial funding for 18F-florbetapir scanning, precursor for 18F-flortaucipir, and technology transfer for manufacturing of 18F-flortaucipir.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tammie L. S. Benzinger.

Ethics declarations

Conflict of interest

John C. Morris, Tammie L.S. Benzinger, and Brian A. Gordon report participation in clinical trials sponsored by Eli Lilly, Roche, and Biogen. Avid Radiopharmaceuticals (a wholly owned subsidiary of Eli Lilly provided doses of 18F-florbetapir, partial funding for 18F-florbetapir scanning, precursor for 18F-flortaucipir and technology transfer for manufacturing of 18F-flortaucipir). None of the authors, nor their family members, own stock or have equity interest (outside of mutual funds or other externally directed accounts) in any pharmaceutical or biotechnology company.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig. 1
figure3

Neuroticism and Openness decrease over time. Spaghetti plot showing longitudinal Neuroticism (a), Conscientiousness (b), Openness (c), Extroversion (d), and Agreeableness (e) scores over time. (PNG 2028 kb)

High Resolution Image (TIFF 2229 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schultz, S.A., Gordon, B.A., Mishra, S. et al. Association between personality and tau-PET binding in cognitively normal older adults. Brain Imaging and Behavior 14, 2122–2131 (2020). https://doi.org/10.1007/s11682-019-00163-y

Download citation

Keywords

  • Personality
  • Neuroticism
  • Alzheimer disease
  • Tau
  • Neurodegeneration