Advertisement

Reduced brain entropy by repetitive transcranial magnetic stimulation on the left dorsolateral prefrontal cortex in healthy young adults

  • Donghui Song
  • Da Chang
  • Jian Zhang
  • Wei Peng
  • Yuanqi Shang
  • Xin Gao
  • Ze Wang
ORIGINAL RESEARCH

Abstract

Entropy indicates system irregularity and the capacity for information processing. Recent research has identified interesting voxel-wise entropy distribution patterns in normal brain and its changes due to aging and brain disorders. A question of great scientific and clinical importance is whether brain entropy (BEN) can be modulated using non-invasive neuromodulations. The purpose of this study was to address this open question using high-frequency repetitive transcranial magnetic stimulation (rTMS). BEN was calculated from resting state fMRI at each voxel acquired before and after applying 20 Hz rTMS or SHAM (control) stimulation. As compared to SHAM, 20 Hz rTMS reduced BEN in medial orbito-frontal cortex and subgenial anterior cingulate cortex (MOFC/sgACC), suggesting a reduced information processing therein, probably as a result of the enhanced top-down regulation by the left DLPFC rTMS. No significant changes were observed to the functional connectivity (FC) between the left DLPFC (the target site) to the rest of the brain, suggesting that rTMS may not affect FC though it might use FC to transfer its effects or the ad hoc information. Our data proved that rTMS can modulate BEN and BEN can be used to monitor rTMS effects.

Keywords

rTMS Brain entropy Resting state fMRI 

Notes

Funding

This study was funded by Natural Science Foundation of Zhejiang Province (Grant LZ15H180001), the Youth 1000 Talent Program of China, and Hangzhou Qianjiang Endowed Professor Program, National Natural Science Foundation of China (No. 61671198).

Compliance with ethical standards

Conflict of interest

All authors declared no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed written consents were obtained from all individual participants included in the study.

References

  1. Akar, S. A., Kara, S., Agambayev, S., & Bilgiç, V. (2015). Nonlinear analysis of EEGs of patients with major depression during different emotional states. Computers in Biology and Medicine, 67, 49–60.CrossRefGoogle Scholar
  2. Allen, E. A., Pasley, B. N., Duong, T., & Freeman, R. D. (2007). Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science, 317(5846), 1918–1921.CrossRefPubMedGoogle Scholar
  3. Baar, E. (2010). Brain-body-mind in the nebulous Cartesian system: A holistic approach by oscillations. New York: Springer.Google Scholar
  4. Balconi, M. (2013). Dorsolateral prefrontal cortex, working memory and episodic memory processes: Insight through transcranial magnetic stimulation techniques. Neuroscience Bulletin, 29(3), 381–389.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Balconi, M., & Canavesio, Y. (2014). High-frequency rTMS on DLPFC increases prosocial attitude in case of decision to support people. Social Neuroscience, 9(1), 82–93.CrossRefPubMedGoogle Scholar
  6. Balconi, M., & Ferrari, C. (2012). Emotional memory retrieval. rTMS stimulation on left DLPFC increases the positive memories. Brain Imaging and Behavior, 6(3), 454–461.CrossRefPubMedGoogle Scholar
  7. Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. The Lancet, 325(8437), 1106–1107.CrossRefGoogle Scholar
  8. Bermudes, R. A., Lanocha, K. I., & Janicak, P. G. (2017). Transcranial Magnetic Stimulation: Clinical Applications for Psychiatric Practice: American psychiatric pub.Google Scholar
  9. Bolognini, N., & Ro, T. (2010). Transcranial magnetic stimulation: Disrupting neural activity to alter and assess brain function. Journal of Neuroscience, 30(29), 9647–9650.CrossRefPubMedGoogle Scholar
  10. Bowman, D. B., Zhang, L., Derado, G., & Chen, S. (2009). Determining functional connectivity using fMRI data with diffusion-based anatomical weighting. NeuroImage, 47(3), 1769.Google Scholar
  11. Bruna, R., Poza, J., Gomez, C., Garcia, M., Fernandez, A., & Hornero, R. (2012). Analysis of spontaneous MEG activity in mild cognitive impairment and Alzheimer's disease using spectral entropies and statistical complexity measures. Journal of Neural Engineering, 9(3), 036007.  https://doi.org/10.1088/1741-2560/9/3/036007.CrossRefPubMedGoogle Scholar
  12. Costa, M., Goldberger, A. L., & Peng, C. K. (2002). Multiscale entropy analysis of complex physiologic time series. Physical review letters, 89(6). doi:Artn 068102.  https://doi.org/10.1103/Physrevlett.89.068102.
  13. Costa, M., Goldberger, A. L., & Peng, C. K. (2005). Multiscale entropy analysis of biological signals. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 71(2 Pt 1), 021906.CrossRefPubMedGoogle Scholar
  14. Curtis, C. E., & D'Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415–423.CrossRefPubMedGoogle Scholar
  15. Da Chang, D. S., Zhang, J., Shang, Y., Ge, Q., & Ze, W. (2018). Caffeine caused a widespread increase of resting brain entropy. Scientific Reports, 8, 2700.  https://doi.org/10.1038/s41598-018-21008-6.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Deco, G., & Jirsa, V. K. (2012). Ongoing cortical activity at rest: Criticality, Multistability, and ghost attractors. Journal of Neuroscience, 32(10), 3366–3375.  https://doi.org/10.1523/Jneurosci.2523-11.2012.CrossRefPubMedGoogle Scholar
  17. Elliott, R., & Deakin, B. (2005). Role of the orbitofrontal cortex in reinforcement processing and inhibitory control: Evidence from functional magnetic resonance imaging studies in healthy human subjects. International Review of Neurobiology, 65, 89–116.Google Scholar
  18. Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 85–93.  https://doi.org/10.1016/j.tics.2010.11.004.CrossRefPubMedGoogle Scholar
  19. Fellows, L. K. (2007). The role of orbitofrontal cortex in decision making. Annals of the New York Academy of Sciences, 1121(1), 421–430.CrossRefPubMedGoogle Scholar
  20. Fernandez, A., Hornero, R., Gomez, C., Turrero, A., Gil-Gregorio, P., Matias-Santos, J., & Ortiz, T. (2010). Complexity analysis of spontaneous brain activity in Alzheimer disease and mild cognitive impairment: An MEG study. Alzheimer Disease and Associated Disorders, 24(2), 182–189.  https://doi.org/10.1097/WAD.0b013e3181c727f7.CrossRefPubMedGoogle Scholar
  21. Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D., & Pascual-Leone, A. (2012). Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biological Psychiatry, 72(7), 595–603.  https://doi.org/10.1016/j.biopsych.2012.04.028.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fregni, F., & Pascual-Leone, A. (2007). Technology insight: Noninvasive brain stimulation in neurology—Perspectives on the therapeutic potential of rTMS and tDCS. Nature Clinical Practice Neurology, 3(7), 383–393.CrossRefPubMedGoogle Scholar
  23. Friston, K. J., Frith, C. D., Passingham, R. E., Dolan, R. J., Liddle, P. F., & Frackowiak, R. S. (1992). Entropy and cortical activity: Information theory and PET findings. Cerebral Cortex, 2(3), 259–267.CrossRefPubMedGoogle Scholar
  24. Friston, K. J., Tononi, G., Sporns, O., & Edelman, G. M. (1995). Characterising the complexity of neuronal interactions. Human Brain Mapping, 3(4), 302–314.  https://doi.org/10.1002/hbm.460030405.CrossRefGoogle Scholar
  25. Fuster, J.-M. (2009). Prefrontal Cortex. In The prefrontal cortex (4th ed.). New York: Academic Press.Google Scholar
  26. Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2010). Blood oxygen level-dependent signal variability is more than just noise. Journal of Neuroscience, 30(14), 4914–4921.  https://doi.org/10.1523/Jneurosci.5166-09.2010.CrossRefPubMedGoogle Scholar
  27. Garrett, D. D., Kovacevic, N., Mcintosh, A. R., & Grady, C. L. (2011). The importance of being variable. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 31(12), 4496–4503.CrossRefGoogle Scholar
  28. Garrett, D. D., Samanez-Larkin, G. R., Macdonald, S. W., Lindenberger, U., Mcintosh, A. R., & Grady, C. L. (2013). Moment-to-moment brain signal variability: A next frontier in human brain mapping? Neuroscience & Biobehavioral Reviews, 37(4), 610–624.CrossRefGoogle Scholar
  29. George, M. S., Lisanby, S. H., Avery, D., McDonald, W. M., Durkalski, V., Pavlicova, M., … Sackeim, H. A. (2010). Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: A sham-controlled randomized trial. Archives of General Psychiatry, 67(5), 507–516.  https://doi.org/10.1001/archgenpsychiatry.2010.46.CrossRefPubMedGoogle Scholar
  30. Glenn, A. L., Raine, A., Schug, R. A., Young, L., & Hauser, M. (2009). Increased DLPFC activity during moral decision-making in psychopathy. Molecular Psychiatry, 14(10), 909–911.CrossRefGoogle Scholar
  31. Gomez, C., Poza, J., Garcia, M., Fernandez, A., & Hornero, R. (2011). Regularity analysis of spontaneous MEG activity in Attention-Deficit/Hyperactivity Disorder. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2011, 1765–1768.  https://doi.org/10.1109/IEMBS.2011.6090504.
  32. Gu, H., Salmeron, B. J., Ross, T. J., Geng, X., Zhan, W., Stein, E. A., & Yang, Y. (2010). Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. NeuroImage, 53(2), 593–601.  https://doi.org/10.1016/j.neuroimage.2010.06.066.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Guo, W., Liu, F., Zhang, Z., Liu, G., Liu, J., Yu, L., et al. (2015). Increased cerebellar functional connectivity with the default-mode network in unaffected siblings of schizophrenia patients at rest. Schizophrenia Bulletin, 41(6), 1317–1325.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Guse, B., Falkai, P., & Wobrock, T. (2010). Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: A systematic review. Journal of Neural Transmission, 117(1), 105–122.  https://doi.org/10.1007/s00702-009-0333-7.CrossRefPubMedGoogle Scholar
  35. Hallett, M. (2000). Transcranial magnetic stimulation and the human brain. Nature, 406(6792), 147–150.CrossRefPubMedGoogle Scholar
  36. Hallett, M. (2007). Transcranial magnetic stimulation: a primer. Neuron, 55(2), 187–199.CrossRefPubMedGoogle Scholar
  37. Heekeren, H. R., Marrett, S., Bandettini, P. A., & Ungerleider, L. G. (2004). A general mechanism for perceptual decision-making in the human brain. Nature, 431(7010), 859–862.CrossRefPubMedGoogle Scholar
  38. Ho, P. S., Lin C., Chen, G. Y., Liu, H. L., Huang, C. M., Lee, T. M. C., Lee, S. H., Wu, S. C. (2017). Complexity analysis of resting state fMRI signals in depressive patient. Paper presented at the 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC).Google Scholar
  39. Hoogendam, J. M., Ramakers, G. M., & Di Lazzaro, V. (2010). Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimulation, 3(2), 95–118.CrossRefPubMedGoogle Scholar
  40. Hutcherson, C. A., Plassmann, H., Gross, J. J., & Rangel, A. (2012). Cognitive regulation during decision making shifts behavioral control between ventromedial and dorsolateral prefrontal value systems. Journal of Neuroscience, 32(39), 13543–13554.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hwang, J. H., Kim, S. H., Park, C. S., Bang, S. A., & Kim, S. E. (2010). Acute high-frequency rTMS of the left dorsolateral prefrontal cortex and attentional control in healthy young men. Brain Research, 1329, 152–158.CrossRefPubMedGoogle Scholar
  42. Jun Xie, Y.-Q. S., Wei Peng, Jian Zhang, Da Chang, Ze Wang. (2018). Network-wise cerebral blood flow redistribution after 20 Hz rTMS on left Dorso-lateral prefrontal cortex. European Journal of Radiology, in press.Google Scholar
  43. Kiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A hierarchy of time-scales and the brain. PLoS Computational Biology, 4(11), e1000209.  https://doi.org/10.1371/journal.pcbi.1000209.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Knight, R. T., Grabowecky, M. F., & Scabini, D. (1995). Role of human prefrontal cortex in attention control. Advances in Neurology, 66, 21–36.PubMedGoogle Scholar
  45. Kondo, H., Osaka, N., & Osaka, M. (2004). Cooperation of the anterior cingulate cortex and dorsolateral prefrontal cortex for attention shifting. NeuroImage, 23(2), 670–679.CrossRefPubMedGoogle Scholar
  46. Lage, C., Wiles, K., Shergill, S. S., & Tracy, D. K. (2016). A systematic review of the effects of low-frequency repetitive transcranial magnetic stimulation on cognition. Journal of Neural Transmission, 123(12), 1–12.CrossRefGoogle Scholar
  47. Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 283(3), R789–R797.  https://doi.org/10.1152/ajpregu.00069.2002.CrossRefPubMedGoogle Scholar
  48. Lam, R. W., Chan, P., Wilkins-Ho, M., & Yatham, L. N. (2008). Repetitive transcranial magnetic stimulation for treatment-resistant depression: A systematic review and metaanalysis. Canadian Journal of Psychiatry, 53(9), 621–631.  https://doi.org/10.1177/070674370805300909.CrossRefPubMedGoogle Scholar
  49. Lan, M. J., Chhetry, B. T., Liston, C., Mann, J. J., & Dubin, M. (2016). Transcranial magnetic stimulation of left dorsolateral prefrontal cortex induces brain morphological changes in regions associated with a treatment resistant major depressive episode: An exploratory analysis. Brain Stimulation, 9(4), 577–583.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Li, Z., Fang, Z., Hager, N., Rao, H., & Wang, Z. (2016a). Hyper-resting brain entropy within chronic smokers and its moderation by sex. Scientific Reports, 6, 29435.  https://doi.org/10.1038/srep29435.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Li, Z., Zang, Y. F., Ding, J., & Wang, Z. (2016b). Assessing the mean strength and variations of the time-to-time fluctuations of resting-state brain activity. Medical & Biological Engineering & Computing, 1–10.Google Scholar
  52. Lipsitz, L. (2011). Loss of complexity with aging: Examples and clinical implications. Gerontologist, 51, 606–606.Google Scholar
  53. Lisanby, S. H., Gutman, D., Luber, B., Schroeder, C., & Sackeim, H. A. (2001). Sham TMS: Intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biological Psychiatry, 49(5), 460–463.CrossRefPubMedGoogle Scholar
  54. MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835–1838.CrossRefPubMedGoogle Scholar
  55. Machado, S., Arias-Carrion, O., Paes, F., Vieira, R. T., Caixeta, L., Novaes, F., … Nardi, A. E. (2013). Repetitive transcranial magnetic stimulation for clinical applications in neurological and psychiatric disorders: An overview. The European Journal of Medicine, 45(3), 191–206.  https://doi.org/10.5152/eajm.2013.39.Google Scholar
  56. Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H., & Pascualleone, A. (2000). Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Experimental Brain Research, 133(4), 425–430.CrossRefPubMedGoogle Scholar
  57. Markett, S., Reuter, M., Montag, C., Voigt, G., Lachmann, B., Rudorf, S., Elger, C. E., & Weber, B. (2014). Assessing the function of the fronto-parietal attention network: Insights from resting-state fMRI and the attentional network test. Human Brain Mapping, 35(4), 1700–1709.CrossRefPubMedGoogle Scholar
  58. Mars, R. B., & Grol, M. J. (2007). Dorsolateral prefrontal cortex, working memory, and prospective coding for action. Journal of Neuroscience, 27(8), 1801–1802.CrossRefPubMedGoogle Scholar
  59. McRae, K., Misra, S., Prasad, A. K., Pereira, S. C., & Gross, J. J. (2012). Bottom-up and top-down emotion generation: Implications for emotion regulation. Social Cognitive and Affective Neuroscience, 7(3), 253–262.  https://doi.org/10.1093/scan/nsq103.CrossRefPubMedGoogle Scholar
  60. Méndez, M. A., Zuluaga, P., Hornero, R., Gómez, C., Escudero, J., Rodríguez-Palancas, A., Ortiz, T., & Fernández, A. (2012). Complexity analysis of spontaneous brain activity: Effects of depression and antidepressant treatment. Journal of Psychopharmacology, 26(5), 636–643.CrossRefPubMedGoogle Scholar
  61. Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nature Reviews. Neuroscience, 1(1), 59–65.  https://doi.org/10.1038/35036228.CrossRefPubMedGoogle Scholar
  62. Mull, B. R., & Seyal, M. (2001). Transcranial magnetic stimulation of left prefrontal cortex impairs working memory. Clinical Neurophysiology, 112(9), 1672–1675.CrossRefPubMedGoogle Scholar
  63. Nettekoven, C., Volz, L. J., Leimbach, M., Pool, E. M., Rehme, A. K., Eickhoff, S. B., Fink, G. R., & Grefkes, C. (2015). Inter-individual variability in cortical excitability and motor network connectivity following multiple blocks of rTMS. NeuroImage, 118, 209–218.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ochsner, K. N., Ray, R. R., Hughes, B., McRae, K., Cooper, J. C., Weber, J., … Gross, J. J. (2009). Bottom-up and top-down processes in emotion generation: Common and distinct neural mechanisms. Psychological Science, 20(11), 1322–1331.  https://doi.org/10.1111/j.1467-9280.2009.02459.x.CrossRefPubMedPubMedCentralGoogle Scholar
  65. O'Reardon, J. P., Solvason, H. B., Janicak, P. G., Sampson, S., Isenberg, K. E., Nahas, Z., … Sackeim, H. A. (2007). Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: A multisite randomized controlled trial. Biological Psychiatry, 62(11), 1208–1216.  https://doi.org/10.1016/j.biopsych.2007.01.018.CrossRefPubMedGoogle Scholar
  66. Osoegawa, C., Gomes, J. S., Grigolon, R. B., Brietzke, E., Gadelha, A., Lacerda, A. L., … de Jesus, D. (2018). Non-invasive brain stimulation for negative symptoms in schizophrenia: An updated systematic review and meta-analysis. Schizophrenia Research.Google Scholar
  67. Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 10(2), 232–237.CrossRefPubMedGoogle Scholar
  68. Pasley, B. N., Allen, E. A., & Freeman, R. D. (2009). State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex. Neuron, 62(2), 291–303.  https://doi.org/10.1016/j.neuron.2009.03.012.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Posner, M. I., Rothbart, M. K., Sheese, B. E., & Tang, Y. (2007). The anterior cingulate gyrus and the mechanism of self-regulation. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 391–395.CrossRefGoogle Scholar
  70. Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews. Neuroscience, 9(7), 545–556.  https://doi.org/10.1038/nrn2357.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Reithler, J., Peters, J. C., & Sack, A. T. (2011). Multimodal transcranial magnetic stimulation: Using concurrent neuroimaging to reveal the neural network dynamics of noninvasive brain stimulation. Progress in Neurobiology, 94(2), 149–165.  https://doi.org/10.1016/j.pneurobio.2011.04.004.CrossRefPubMedGoogle Scholar
  72. Rempel-Clower, N. (2007). Role of orbitofrontal cortex connections in emotion. Annals of the New York Academy of Sciences, 1121(1), 72–86.Google Scholar
  73. Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology. Heart and Circulatory Physiology, 278(6), H2039–H2049.CrossRefPubMedGoogle Scholar
  74. Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10(3), 284–294.CrossRefPubMedGoogle Scholar
  75. Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55(1), 11–29.CrossRefPubMedGoogle Scholar
  76. Romei, V., Thut, G., & Silvanto, J. (2016). Information-based approaches of noninvasive transcranial brain stimulation. Trends in Neurosciences, 39(11), 782–795.  https://doi.org/10.1016/j.tins.2016.09.001.CrossRefPubMedGoogle Scholar
  77. Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., & Group, S. O. T. C. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology Official Journal of the International Federation of Clinical Neurophysiology, 120(12), 2008–2039.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Rossini, P. M., & Rossi, S. (2007). Transcranial magnetic stimulation diagnostic, therapeutic, and research potential. Neurology, 68(7), 484–488.CrossRefPubMedGoogle Scholar
  79. Rosso, O. A., Martin, M. T., & Plastino, A. (2002). Brain electrical activity analysis using wavelet based informational tools. Physica A, 313, 587–609.CrossRefGoogle Scholar
  80. Rubinov, M., Sporns, O., Thivierge, J. P., & Breakspear, M. (2011). Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLoS Computational Biology, 7(6), e1002038.  https://doi.org/10.1371/journal.pcbi.1002038.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Rule, R. R., Shimamura, A. P., & Knight, R. T. (2002). Orbitofrontal cortex and dynamic filtering of emotional stimuli. Cognitive, Affective, & Behavioral Neuroscience, 2(3), 264–270.CrossRefGoogle Scholar
  82. Rushworth, M., Behrens, T., Rudebeck, P., & Walton, M. (2007). Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends in Cognitive Sciences, 11(4), 168–176.CrossRefPubMedGoogle Scholar
  83. Saad, Z. S., Gotts, S. J., Murphy, K., Chen, G., Jo, H. J., Martin, A., & Cox, R. W. (2012). Trouble at rest: How correlation patterns and group differences become distorted after global signal regression. Brain Connectivity, 2(1), 25–32.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Sandler, S. I. (2006). Chemical, biochemical, and engineering thermodynamics (4th ed.): John Wiley & Sons Hoboken, NJ.Google Scholar
  85. Siebner, H. R., Bergmann, T. O., Bestmann, S., Massimini, M., Johansen-Berg, H., Mochizuki, H., et al. (2009). Consensus paper: Combining transcranial stimulation with neuroimaging. Brain Stimulation, 2(2), 58–80.CrossRefPubMedGoogle Scholar
  86. Silvanto, J., Muggleton, N., & Walsh, V. (2008). State-dependency in brain stimulation studies of perception and cognition. Trends in Cognitive Sciences, 12(12), 447–454.  https://doi.org/10.1016/j.tics.2008.09.004.CrossRefPubMedGoogle Scholar
  87. Singer, W. (2009). The brain, a complex self-organizing system. European Review, 17(02), 321–329.CrossRefGoogle Scholar
  88. Slotema, C. W., Dirk Blom, J., Hoek, H. W., & Sommer, I. E. (2010). Should we expand the toolbox of psychiatric treatment methods to include repetitive transcranial magnetic stimulation (rTMS)? A meta-analysis of the efficacy of rTMS in psychiatric disorders. Journal of Clinical Psychiatry, 71(7), 873–884.CrossRefPubMedGoogle Scholar
  89. Sokunbi, M., Fung, W., Sawlani, V., Choppin, S., Linden, D., & Thome, J. (2014a). Resting state fMRI entropy probes complexity of brain activity in adults with ADHD. Psychiatry Research: Neuroimaging, 214(3), 341–348.CrossRefGoogle Scholar
  90. Sokunbi, M. O., Gradin, V. B., Waiter, G. D., Cameron, G. G., Ahearn, T. S., Murray, A. D., et al. (2014b). Nonlinear complexity analysis of brain FMRI signals in schizophrenia. PLoS One, 9(5), e95146.  https://doi.org/10.1371/journal.pone.0095146.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Sosnoff, J. J., Vallantine, A. D., & Newell, K. M. (2007). Aging: loss of complexity or loss of adaptability. Journal of Sport & Exercise Psychology, 29, S131–S131.Google Scholar
  92. Spreng, R. N., Mar, R. A., & Kim, A. S. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489–510.  https://doi.org/10.1162/jocn.2008.21029.CrossRefPubMedGoogle Scholar
  93. Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain complexity - relating functional segregation and integration in the nervous-system. Proceedings of the National Academy of Sciences of the United States of America, 91(11), 5033–5037.  https://doi.org/10.1073/pnas.91.11.5033.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Trojak, B., Meille, V., Achab, S., Lalanne, L., Poquet, H., Ponavoy, E., … Chauvet-Gelinier, J. C. (2015). Transcranial magnetic stimulation combined with nicotine replacement therapy for smoking cessation: A randomized controlled trial. Brain Stimulation, 8(6), 1168–1174.  https://doi.org/10.1016/j.brs.2015.06.004.CrossRefPubMedGoogle Scholar
  95. Varghese, A., George, G., Kaimal, R., & Jose, S. (2018). Repetitive transcranial magnetic stimulation versus sham therapy in major depression. British Journal of Mental Health Nursing, 7(1), 14–23.CrossRefGoogle Scholar
  96. Wagner, T., Rushmore, J., Eden, U., & Cabre, A. V. (2009). Biophysical foundations underlying TMS: Setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 45(9), 1025–1034.CrossRefPubMedGoogle Scholar
  97. Walsh, V., & Cowey, A. (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nature Reviews Neuroscience, 1(1), 73–80.CrossRefPubMedGoogle Scholar
  98. Wang, Z., Li, Y., Childress, A. R., & Detre, J. A. (2014). Brain entropy mapping using fMRI. PLoS One, 9(3), e89948.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Wassermann, E. M. (1998). Risk and safety of repetitive transcranial magnetic stimulation: Report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalography and Clinical Neurophysiology, 108(1), 1–16.Google Scholar
  100. Wobrock, T., Guse, B., Cordes, J., Wölwer, W., Winterer, G., Gaebel, W., et al. (2015). Left prefrontal high-frequency repetitive transcranial magnetic stimulation for the treatment of schizophrenia with predominant negative symptoms: A sham-controlled, randomized multicenter trial. Biological Psychiatry, 77(11), 979–988.CrossRefPubMedGoogle Scholar
  101. Xue, S. W., Guo, Y., Peng, W., Zhang, J., Chang, D., Zang, Y. F., & Wang, Z. (2017). Increased low-frequency resting-state brain activity by high-frequency repetitive TMS on the left dorsolateral prefrontal cortex. Frontiers in Psychology, 8(2266), 2266.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Yan, C., & Zang, Y. (2010). DPARSF: A MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.  https://doi.org/10.3389/fnsys.2010.00013.Google Scholar
  103. Yang, A. C., Huang, C. C., Yeh, H. L., Liu, M. E., Hong, C. J., Tu, P. C., … Tsai, S. J. (2013). Complexity of spontaneous BOLD activity in default mode network is correlated with cognitive function in normal male elderly: A multiscale entropy analysis. Neurobiology of Aging, 34(2), 428–438.  https://doi.org/10.1016/j.neurobiolaging.2012.05.004.CrossRefPubMedGoogle Scholar
  104. Yang, A. C., Hong, C. J., Liou, Y. J., Huang, K. L., Huang, C. C., Liu, M. E., … Lin, C. P. (2015). Decreased resting-state brain activity complexity in schizophrenia characterized by both increased regularity and randomness. Human Brain Mapping, 36(6), 2174–2186.CrossRefPubMedGoogle Scholar
  105. Yao, Y., Lu, W. L., Xu, B., Li, C. B., Lin, C. P., Waxman, D., & Feng, J. F. (2013). The increase of the functional entropy of the human brain with age. Scientific Reports, 3(10), 2853.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Ze Wang, J. S., Dingna Duan, Stefanie Darnley, Ying Jing, Jian Zhang, Charles O'Brien, Anna Rose Childress. (2016). A hypo-status in drug dependent brain revealed by multi-modal MRI. Addiction Biology, in press.Google Scholar
  107. Zhang, J., Cheng, W., Liu, Z., Zhang, K., Lei, X., Yao, Y., et al. (2016). Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain A Journal of Neurology, 139(Pt 8), 2307–2321.CrossRefPubMedGoogle Scholar
  108. Zhou, F., Zhuang, Y., Gong, H., Zhan, J., Grossman, M., & Wang, Z. (2016). Resting state brain entropy alterations in relapsing remitting multiple sclerosis. PLoS One, 11(1), e0146080.  https://doi.org/10.1371/journal.pone.0146080.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Ziemann, U., & Siebner, H. R. (2015). Inter-subject and inter-session variability of plasticity induction by non-invasive brain stimulation: Boon or bane? Brain Stimulation, 8(3), 662–663.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Cognition and Brain Disorders, Department of PsychologyHangzhou Normal UniversityZhejiang, ProvinceChina
  2. 2.Department of Radiology, Lewis Katz School of MedicineTemple UniversityPhiladelphiaUSA

Personalised recommendations