Functional connectivity change between posterior cingulate cortex and ventral attention network relates to the impairment of orientation for time in Alzheimer’s disease patients

  • Ken-ichiro Yamashita
  • Taira Uehara
  • Pukovisa Prawiroharjo
  • Koji Yamashita
  • Osamu Togao
  • Akio Hiwatashi
  • Yoshihide Taniwaki
  • Hidetsuna Utsunomiya
  • Takuya Matsushita
  • Ryo Yamasaki
  • Jun-ichi Kira
Original Research


Alzheimer’s disease (AD) patients exhibit various cognitive dysfunctions, including impairment of orientation for time (OT). The brain regions underlying OT impairment remain to be elucidated. A previous single-photon emission computed tomography study has indicated hypoperfusion of the posterior cingulate cortex (PCC) in relation to deterioration of OT. In this study, we investigated whole brain functional connectivity changes of PCC using resting-state functional magnetic resonance imaging. Voxel-based functional connectivity with PCC was analyzed in OT-poor or OT-good AD patients, classified according to the mean OT scores of the Mini-Mental State Examination subscale. The connectivities of dorsal frontal lobe, and lateral parietal and lateral temporal lobes with PCC in the right hemisphere were reduced in the OT-poor AD group compared with the OT-good AD group. A subtraction connectivity map of OT score differences (OT-good minus OT-poor) revealed the right middle temporal gyrus near the temporo-parietal junction as a significantly connected region with PCC. These results suggest that the right posterior part of the middle temporal gyrus may play an important role in OT in conjunction with PCC, and that disconnection between PCC and the right ventral attention network may cause OT disturbance in AD patients.


Alzheimer’s disease Orientation for time Resting-state fMRI Posterior cingulate cortex Middle temporal gyrus Attention network 



This work was supported in part by a Grant-in-Aid for Scientific Research (C) to K.Y. (15 K09353) from the Japan Society for the Promotion of Science (JSPS), Japan.

Compliance with ethical standards

Conflict of interest

Ken-ichiro Yamashita, Taira Uehara, Pukovia Prawiroharjo, Koji Yamashita, Osamu Togao, Akio Hiwatashi, Yoshihide Taniwaki, Hidetsuna Utsunomiya, Takuya Matsushita, Ryo Yamasaki and Jun-ichi Kira report no conflicts of interest.

Informed consent

All procedures performed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975. Informed consent was obtained from all patients included in the study.


  1. Alzheimer’s association. (2016). Alzheimer's disease facts and figures. (2016). Alzheimers Dement, 12(4), 459–509.CrossRefGoogle Scholar
  2. Ashford, J. W., Kolm, P., Colliver, J. A., Bekian, C., & Hsu, L. N. (1989). Alzheimer patient evaluation and the mini-mental state: Item characteristic curve analysis. Journal of Gerontology, 44(5), 139–146.CrossRefGoogle Scholar
  3. Breese, C. R., Hampson, R. E., & Deadwyler, S. E. (1989). Hippocampal place cells: Stereotypy and plasticity. The Journal of Neuroscience, 9(4), 1097–1111.CrossRefPubMedGoogle Scholar
  4. Brier, M. R., Thomas, J. B., Snyder, A. Z., Benzinger, T. L., Zhang, D., Raichle, M. E., Holtzman, D. M., Morris, J. C., & Ances, B. M. (2012). Loss of intranetwork and internetwork resting state functional connections with Alzheimer's disease progression. The Journal of Neuroscience, 32(26), 8890–8899. Scholar
  5. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. CrossRefPubMedGoogle Scholar
  6. Burns, A., Philpot, M. P., Costa, D. C., Ell, P. J., & Levy, R. (1989). The investigation of Alzheimer's disease with single photon emission tomography. Journal of Neurology, Neurosurgery, and Psychiatry, 52(2), 248–253.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3(3), 201–215. Scholar
  8. Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Natl Neurosci, 3(3), 292–297. Scholar
  9. Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324. Scholar
  10. Damoiseaux JS, Prater KE, Miller BL, Greicius MD. (2012). Functional connectivity tracks clinical deterioration in Alzheimer’s disease. Neurobiology of Aging, 33 (4), 828.e19–828.828.e30. doi:
  11. Dipasquale, O., & Cercignanani, M. (2016). Network functional connectivity and whole-brain functional connectomics to investigate cognitive decline in neurodegenerative conditions. Functional Neurology, 31(4), 191–203.PubMedGoogle Scholar
  12. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.CrossRefPubMedGoogle Scholar
  13. Galasko, D., Klauber, M. R., Hofstetter, C. R., Salmon, D. P., Lasker, B., & Thal, L. J. (1990). The mini-mental state examination in the early diagnosis of Alzheimer’s disease. Archives of Neurology, 47(1), 49–52.CrossRefPubMedGoogle Scholar
  14. Giannakopoulos, P., Gold, G., Duc, M., Michel, J. P., Hof, P. R., & Bouras, C. (2000). Neural substrates of spatial and temporal disorientation in Alzheimer's disease. Acta Neuropathologica, 100(2), 189–195.CrossRefPubMedGoogle Scholar
  15. Giessing, C., Thiel, C.M., Alexander-Bloch, A.F., Patel, A.X., Bullmore, E.T. (2013). Human brain functional network changes associated with enhanced and impaired attentional task performance. The Journal of Neuroscience, 33(14), 5903–5914.
  16. Grothe, M. J., & Teipel, S. J. (2016). Alzheimer’s Disease Neuroimaging Initiative. Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer's disease correspond to dissociable functional brain networks. Human Brain Mapping, 37(1), 35–53. CrossRefPubMedGoogle Scholar
  17. Hampson, M., Driesen, N., Roth, J. K., Gore, J. C., & Constable, R. T. (2010). Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magnetic Resonance Imaging, 28(8), 1051–1057. Scholar
  18. Hebert, L. E., Scherr, P. A., Beckett, L. A., Albert, M. S., Pilgrim, D. M., Chown, M. J., Funkenstein, H. H., & Evans, D. A. (1995). Age-specific incidence of Alzheimer’s disease in a community population. JAMA, 273(17), 1354–1359.CrossRefPubMedGoogle Scholar
  19. Hirono, N., Mori, E., Ishii k, I. Y., Imamura, T., Shimomura, T., et al. (1998). Hypoperfusion in the posterior cingulate gyrus correlates with disorientation for time and place in Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 64(4), 552–554.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Honda, N., Machida, K., Matsumoto, T., Matsuda, H., Imabayashi, E., Hashimoto, J., Hosono, M., Inoue, Y., Koizumi, K., Kosuda, S., Momose, T., Mori, Y., & Oshima, M. (2003). Three-dimensional stereotactic surface projection of brain perfusion SPECT improves diagnosis of Alzheimer's disease. Annals of Nuclear Medicine, 17(8), 641–648.CrossRefPubMedGoogle Scholar
  21. Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in systems neuroscience: The danger of double dipping. Nature Neuroscience, 12(5), 535–540. Scholar
  22. Lee, M. H., Hacker, C. D., Snyder, A. Z., Corbetta, M., Zhang, D., Leuthardt, E. C., & Shimony, J. S. (2012). Clustering of resting state networks. PLoS One, 7(7), e40370. Scholar
  23. Liu, T., Hospadaruk, L., Zhu, D. C., & Gardner, J. L. (2011). Feature specific attentional priority signals in human cortex. The Journal of Neuroscience, 31(12), 4484–4495. Scholar
  24. Mars, R. B., Sallet, J., Schüffelgen, U., Jbabdi, S., Toni, I., & Rushworth, M. F. (2012). Connectivity-based subdivisions of the human right "temporoparietal junction area": Evidence for different areas participating in different cortical networks. Cerebral Cortex, 22(8), 1894–1903. Scholar
  25. McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack Jr., C. R., Kawas, C. H., et al. (2011). The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 263–269. Scholar
  26. Minoshima, S., Giordani, B., Berent, S., Frey, K. A., Foster, N. L., & Kuhl, D. E. (1997). Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Annals of Neurology, 42(1), 85–94. Scholar
  27. Neary, D., Snowden, J. S., Shields, R. A., Burjan, A. W., Northen, B., MacDermott, N., Prescott, M. C., & Testa, H. J. (1987). Single photon emission tomography using 99m Tc-HM-PAO in the investigation of dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 50(9), 1101–1109.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nitrini, R., Buchpiquel, C. A., Caramelli, P., Bahia, V. S., Mathias, S. C., Nascimento, C. M., et al. (2000). SPECT in Alzheimer's disease: Features associated with bilateral parietotemporal hypoperfusion. Acta Neurologica Scandinavica, 101(3), 172–176.CrossRefPubMedGoogle Scholar
  29. O'Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 381(6581), 425–428. Scholar
  30. Papez, J. W. (1995). A proposed mechanism of emotion. 1937. The Journal of Neuropsychiatry and Clinical Neurosciences, 7(1), 103–112. Scholar
  31. Peer, M., Salmon, R., Goldberg, I., Blanke, O., & Arzy, S. (2015). Brain system for mental orientation in space, time, and person. Proceedings of the National Academy of Sciences of the United States of America, 112(35), 11072–11077. Scholar
  32. Perry, R. J., & Hodges, J. R. (1999). Attention and executive deficits in Alzheimer’s disease. A critical review. Brain, 122, 383–404.CrossRefPubMedGoogle Scholar
  33. Pievani, M., de Haan, W., Wu, T., Seeley, W. W., & Fristoni, G. B. (2011). Functional network disruption in the degenerative dementias. Lancet Neurology, 10(9), 829–843. Scholar
  34. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systemic correlation in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. Scholar
  35. Power, J. D., Mitra, A., Laumann TO, Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84, 320–341. Scholar
  36. Qian, S., Zhang, Z., Li, B., & Sun, G. (2015). Functional-structural degeneration in dorsal and ventral attention systems for Alzheimer’s disease, amnestic mild cognitive impairment. Brain Imaging Behay, 9(4), 790–800. Scholar
  37. Ranasinghe, K. G., Hinkley, L. B., Beagle, A. J., Mizuiri, D., Dowling, A. F., Honma, S. M., Finucane, M. M., Scherling, C., Miller, B. L., Nagarajan, S. S., & Vossel, K. A. (2014). Regional functional connectivity predicts distinct cognitive impairments in Alzheimer's disease spectrum. Neuroimage Clinical, 5, 385–395. Scholar
  38. Ryan, J. J., Glass, L. A., Bartels, J. M., Bergner, C. M., & Paolo, A. M. (2009). Predicting neuropsychological test performance on the basis of temporal orientation. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 16(3), 330–337. Scholar
  39. Sperling, R. A., Dickerson, D. C., Pihlajamaki, M., Vannini, P., LaViolette, P. S., Vitolo, O. V., et al. (2010). Functional alterations in memory networks in early Alzheimer's disease. Neuromolecular Medicine, 12(1), 27–43. Scholar
  40. Spinnler, H., & Della Sala, S. (1988). The role of clinical neuropsychology in the neurological diagnosis of Alzheimer's disease. Journal of Neurology, 235(5), 258–271.CrossRefPubMedGoogle Scholar
  41. Szewczyk-Krolikowski, K., Menke, R. A., Rolinski, M., Duff, E., Salimi-Khorshidi, G., Filippini, N., et al. (2014). Functional connectivity in the basal ganglia network differentiates PD patients from controls. Neurology, 83(3), 208–214. Scholar
  42. Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., Hansen, L. A., & Katzman, R. (1991). Physical basis of cognitive alterations in Alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Annals of Neurology, 30(4), 572–580. Scholar
  43. Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neroscientist, 20(2), 150–159. Scholar
  44. Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125–141. Scholar
  45. Yamashita, K., Taniwaki, Y., Utsunomiya, H., & Taniwaki, T. (2014). Cerebral blood flow reduction associated with orientation for time in amnesic mild cognitive impairment and Alzheimer disease patients. Journal of Neuroimaging, 24(6), 590–594. Scholar
  46. Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., et al. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165. Scholar
  47. Zhang, H. Y., Wang, S. J., Liu, B., Ma, Z. L., Yang, M., Zhang, Z. J., & Teng, G. J. (2010). Resting brain connectivity: Changes during the progress of Alzheimer disease. Radiology, 256(2), 598–606. Scholar
  48. Zhang, Z., Zheng, H., Liang, K., Wang, H., Kong, S., Hu, J., Wu, F., & Sun, G. (2015). Functional degeneration in dorsal and ventral attention systems in amnestic mild cognitive impairment and Alzheimer's disease: An fMRI study. Neuroscience Letters, 585, 160–165. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ken-ichiro Yamashita
    • 1
  • Taira Uehara
    • 1
  • Pukovisa Prawiroharjo
    • 1
  • Koji Yamashita
    • 2
  • Osamu Togao
    • 2
  • Akio Hiwatashi
    • 2
  • Yoshihide Taniwaki
    • 3
  • Hidetsuna Utsunomiya
    • 4
  • Takuya Matsushita
    • 1
  • Ryo Yamasaki
    • 1
  • Jun-ichi Kira
    • 1
  1. 1.Department of Neurology, Neurological Institute, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  2. 2.Department of Clinical Radiology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  3. 3.Department of NeurologyFukuoka Sanno HospitalFukuokaJapan
  4. 4.Department of RadiologyFukuoka Sanno HospitalFukuokaJapan

Personalised recommendations