Skip to main content
Log in

Common and distinct changes of default mode and salience network in schizophrenia and major depression

  • ORIGINAL RESEARCH
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Brain imaging reveals schizophrenia as a disorder of macroscopic brain networks. In particular, default mode and salience network (DMN, SN) show highly consistent alterations in both interacting brain activity and underlying brain structure. However, the same networks are also altered in major depression. This overlap in network alterations induces the question whether DMN and SN changes are different across both disorders, potentially indicating distinct underlying pathophysiological mechanisms. To address this question, we acquired T1-weighted, diffusion-weighted, and resting-state functional MRI in patients with schizophrenia, patients with major depression, and healthy controls. We measured regional gray matter volume, inter-regional structural and intrinsic functional connectivity of DMN and SN, and compared these measures across groups by generalized Wilcoxon rank tests, while controlling for symptoms and medication. When comparing patients with controls, we found in each patient group SN volume loss, impaired DMN structural connectivity, and aberrant DMN and SN functional connectivity. When comparing patient groups, SN gray matter volume loss and DMN structural connectivity reduction did not differ between groups, but in schizophrenic patients, functional hyperconnectivity between DMN and SN was less in comparison to depressed patients. Results provide evidence for distinct functional hyperconnectivity between DMN and SN in schizophrenia and major depression, while structural changes in DMN and SN were similar. Distinct hyperconnectivity suggests different pathophysiological mechanism underlying aberrant DMN-SN interactions in schizophrenia and depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abou-Elseoud, A., Starck, T., Remes, J., Nikkinen, J., Tervonen, O., & Kiviniemi, V. (2010). The effect of model order selection in group PICA. Human Brain Mapping, 31(8), 1207–1216.

    PubMed  PubMed Central  Google Scholar 

  • Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., et al. (2011). A baseline for the multivariate comparison of resting-state networks. Frontiers in Systems Neuroscience, 5, 2.

    PubMed  PubMed Central  Google Scholar 

  • American Psychiatric Association. (2000). DSM-IV-TR: Diagnostic and statistical manual of mental disorders, text revision. Washington, DC: American Psychiatric Association, 75.

    Google Scholar 

  • Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine, 34(4), 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Bora, E., Fornito, A., Pantelis, C., & Yücel, M. (2012). Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. Journal of Affective Disorders, 138(1), 9–18.

    Article  PubMed  Google Scholar 

  • Borgwardt, S. J., McGUIRE, P. K., Aston, J., Berger, G., Dazzan, P., Gschwandtner, U. T. E., et al. (2007). Structural brain abnormalities in individuals with an at-risk mental state who later develop psychosis. The British Journal of Psychiatry, 191(51), s69-s75.

    Google Scholar 

  • Bragulat, V., Paillère-Martinot, M. L., Artiges, E., Frouin, V., Poline, J. B., & Martinot, J. L. (2007). Dopaminergic function in depressed patients with affective flattening or with impulsivity:[18 F] fluoro-L-dopa positron emission tomography study with voxel-based analysis. Psychiatry Research: Neuroimaging, 154(2), 115–124.

    Article  CAS  PubMed  Google Scholar 

  • Brunner, E., & Munzel, U. (2000). The nonparametric Behrens-Fisher problem: asymptotic theory and a small-sample approximation. Biometrical Journal, 42(1), 17–25.

    Article  Google Scholar 

  • Buchsbaum, M. S., Schoenknecht, P., Torosjan, Y., Newmark, R., Chu, K. W., Mitelman, S., et al. (2006). Diffusion tensor imaging of frontal lobe white matter tracts in schizophrenia. Annals of General Psychiatry, 5(1), 19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Duan, M., Xie, Q., Lai, Y., Dong, L., Cao, W., et al. (2015). Functional disconnection between the visual cortex and the sensorimotor cortex suggests a potential mechanism for self-disorder in schizophrenia. Schizophrenia Research, 166(1), 151–157.

    Article  PubMed  Google Scholar 

  • Cole, D. M., Oei, N. Y., Soeter, R. P., Both, S., van Gerven, J. M., Rombouts, S. A., & Beckmann, C. F. (2013). Dopamine-dependent architecture of cortico-subcortical network connectivity. Cerebral Cortex, 23(7), 1509–1516.

    Article  PubMed  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.

    Article  CAS  PubMed  Google Scholar 

  • Deco, G., Jirsa, V. K., & McIntosh, A. R. (2013). Resting brains never rest: computational insights into potential cognitive architectures. Trends in Neurosciences, 36(5), 268–274.

    Article  CAS  PubMed  Google Scholar 

  • Dong, D., Wang, Y., Chang, X., Luo, C., & Yao, D. (2017). Dysfunction of large-scale brain networks in Schizophrenia: a meta-analysis of resting-state functional connectivity. Schizophrenia bulletin, sbx034.

  • Duncan, N. W., Wiebking, C., & Northoff, G. (2014). Associations of regional GABA and glutamate with intrinsic and extrinsic neural activity in humans—A review of multimodal imaging studies. Neuroscience & Biobehavioral Reviews, 47, 36–52.

    Article  CAS  Google Scholar 

  • Ellison-Wright, I., & Bullmore, E. (2009). Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophrenia Research, 108(1), 3–10.

    Article  PubMed  Google Scholar 

  • Ellison-Wright, I., Glahn, D. C., Laird, A. R., Thelen, S. M., & Bullmore, E. (2008). The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. American Journal of Psychiatry, 165(8), 1015–1023.

    Article  PubMed  Google Scholar 

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711.

    Article  CAS  PubMed  Google Scholar 

  • Frodl, T. S., Koutsouleris, N., Bottlender, R., Born, C., Jäger, M., Scupin, I., … Meisenzahl, E. M. (2008). Depression-related variation in brain morphology over 3 years: effects of stress? Archives of General Psychiatry, 65(10), 1156–1165.

    Article  PubMed  Google Scholar 

  • Goodkind, M., Eickhoff, S. B., Oathes, D. J., Jiang, Y., Chang, A., Jones-Hagata, L. B., et al. (2015). Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry, 72(4), 305–315.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H., et al. (2007). Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5), 429–437.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1), 253–258.

    Article  CAS  Google Scholar 

  • Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biolology, 6(7), e159.

    Article  CAS  Google Scholar 

  • Hahn, K., Myers, N., Prigarin, S., Rodenacker, K., Kurz, A., Förstl, H., et al. (2013). Selectively and progressively disrupted structural connectivity of functional brain networks in Alzheimer’s disease—revealed by a novel framework to analyze edge distributions of networks detecting disruptions with strong statistical evidence. Neuroimage, 81, 96–109.

    Article  PubMed  Google Scholar 

  • Hamilton, J. P., Chen, M. C., & Gotlib, I. H. (2013). Neural systems approaches to understanding major depressive disorder: an intrinsic functional organization perspective. Neurobiology of Disease, 52, 4–11.

    Article  PubMed  Google Scholar 

  • Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery & Psychiatry, 23(1), 56–62.

    Article  CAS  Google Scholar 

  • Howes, O. D., Bose, S. K., Turkheimer, F., Valli, I., Egerton, A., Valmaggia, L. R., et al. (2011). Dopamine synthesis capacity before onset of psychosis: a prospective [18F]-DOPA PET imaging study. American Journal of Psychiatry, 168(12), 1311–1317.

    Article  PubMed  Google Scholar 

  • Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli, D. A. (2015). Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry, 72(6), 603–611.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kay, S. R., Flszbein, A., & Opfer, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261.

    Article  CAS  PubMed  Google Scholar 

  • Kieseppä, T., Eerola, M., Mäntylä, R., Neuvonen, T., Poutanen, V. P., Luoma, K., et al. (2010). Major depressive disorder and white matter abnormalities: a diffusion tensor imaging study with tract-based spatial statistics. Journal of Affective Disorders, 120(1), 240–244.

    Article  PubMed  Google Scholar 

  • Kraguljac, N. V., White, D. M., Reid, M. A., & Lahti, A. C. (2013). Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia. JAMA Psychiatry, 70(12), 1294–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazar, M., Weinstein, D. M., Tsuruda, J. S., Hasan, K. M., Arfanakis, K., Meyerand, M. E., et al. (2003). White matter tractography using diffusion tensor deflection. Human Brain Mapping, 18(4), 306–321.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao, Y., Huang, X., Wu, Q., Yang, C., Kuang, W., Du, M., et al. (2013). Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. Journal of Psychiatry & Neuroscience: JPN, 38(1), 49.

    Article  Google Scholar 

  • Luo, C., Zhang, Y., Cao, W., Huang, Y., Yang, F., Wang, J., et al. (2015). Altered structural and functional feature of striato-cortical circuit in benign epilepsy with centrotemporal spikes. International Journal of Neural Systems, 25(06), 1550027.

    Article  PubMed  Google Scholar 

  • Manoliu, A., Meng, C., Brandl, F., Doll, A., Tahmasian, M., Scherr, M., et al. (2013a). Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder. Frontiers in Human Neuroscience, 7, 930. https://doi.org/10.3389/fnhum.2013.00930.

  • Manoliu, A., Riedl, V., Doll, A., Bäuml, J. G., Mühlau, M., Schwerthöffer, D., et al. (2013b). Insular dysfunction reflects altered between-network connectivity and severity of negative symptoms in schizophrenia during psychotic remission. Frontiers in Human Neuroscience, 7, 216.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manoliu, A., Riedl, V., Zherdin, A., Mühlau, M., Schwerthöffer, D., Scherr, M., et al. (2014). Aberrant dependence of default mode/central executive network interactions on anterior insular salience network activity in schizophrenia. Schizophrenia Bulletin, 40(2), 428–437.

    Article  PubMed  Google Scholar 

  • Meng, C., Brandl, F., Tahmasian, M., Shao, J., Manoliu, A., Scherr, M., et al. (2013). Aberrant topology of striatum’s connectivity is associated with the number of episodes in depression. Brain, 137, 598–609.

    Article  PubMed  Google Scholar 

  • Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506.

    Article  PubMed  Google Scholar 

  • Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F., & Tendolkar, I. (2015). Resting-state functional connectivity in major depressive disorder: a review. Neuroscience & Biobehavioral Reviews, 56, 330–344.

    Article  Google Scholar 

  • Northoff, G., & Sibille, E. (2014). Cortical GABA neurons and self-focus in depression: a model linking cellular, biochemical, and neural network findings. Molecular Psychiatry, 19(9), 959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orliac, F., Naveau, M., Joliot, M., Delcroix, N., Razafimandimby, A., Brazo, P., et al. (2013). Links among resting-state default-mode network, salience network, and symptomatology in schizophrenia. Schizophrenia Research, 148(1), 74–80.

    Article  PubMed  Google Scholar 

  • Palaniyappan, L., & Liddle, P. F. (2012). Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. Journal of Psychiatry & Neuroscience: JPN, 37, 17–27.

    Article  Google Scholar 

  • Palaniyappan, L., Simmonite, M., White, T. P., Liddle, E. B., & Liddle, P. F. (2013). Neural primacy of the salience processing system in schizophrenia. Neuron, 79(4), 814–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pessoa, L. (2014). Brain networks: Moving beyond graphs. Reply to comments on ``understanding brain networks and brain organization’’. Physics of Life Reviews, 11, 462–466.

    Article  PubMed  Google Scholar 

  • Schmidt, A., Diwadkar, V. A., Smieskova, R., Harrisberger, F., Lang, U. E., McGuire, P., et al. (2014). Approaching a network connectivity-driven classification of the psychosis continuum: a selective review and suggestions for future research. Frontiers in Human Neuroscience, 8, 1047.

    Article  PubMed  Google Scholar 

  • Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349–2356.

    Article  CAS  PubMed  Google Scholar 

  • Shao, J., Myers, N., Yang, Q., Feng, J., Plant, C., Böhm, C., et al. (2012). Prediction of Alzheimer’s disease using individual structural connectivity networks. Neurobiology of Aging, 33(12), 2756–2765.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheline, Y. I., Price, J. L., Yan, Z., & Mintun, M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences, 107(24), 11020–11025.

    Article  CAS  Google Scholar 

  • Sorg, C., Manoliu, A., Neufang, S., Myers, N., Peters, H., Schwerthöffer, D., et al. (2013). Increased intrinsic brain activity in the striatum reflects symptom dimensions in schizophrenia. Schizophrenia Bulletin, 39(2), 387–395.

    Article  PubMed  Google Scholar 

  • Spitzer, R. L., Williams, J. B., Gibbon, M., & First, M. B. (1992). The structured clinical interview for DSM-III-R (SCID): I: history, rationale, and description. Archives of General Psychiatry, 49(8), 624–629.

    Article  CAS  PubMed  Google Scholar 

  • Stephan, K. E., Friston, K. J., & Frith, C. D. (2009). Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. SchizophreniaBulletin, 35, 509–527.

    Google Scholar 

  • Tahmasian, M., Knight, D. C., Manoliu, A., Schwerthöffer, D., Scherr, M., Meng, C., et al. (2013). Aberrant intrinsic connectivity of hippocampus and amygdala overlap in the fronto-insular and dorsomedial-prefrontal cortex in major depressive disorder. Frontiers in Human Neuroscience, 7, 639.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uddin, L. Q., Supekar, K. S., Ryali, S., & Menon, V. (2011). Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. Journal of Neuroscience, 31(50), 18578–18589.

    Article  CAS  PubMed  Google Scholar 

  • van den Heuvel, M. P., & Fornito, A. (2014). Brain networks in schizophrenia. Neuropsychology Review, 24(1), 32–48.

    Article  PubMed  Google Scholar 

  • Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. Neuroimage, 59(1), 431–438.

    Article  PubMed  Google Scholar 

  • Walter, M., Henning, A., Grimm, S., Schulte, R. F., Beck, J., Dydak, U., et al. (2009). The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Archives of General Psychiatry, 66(5), 478–486.

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Zhou, Y., Zhuo, C., Qin, W., Zhu, J., Liu, H., et al. (2015). Altered functional connectivity of the cingulate subregions in schizophrenia. Translational Psychiatry, 5(6), e575.

  • Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., McCarley, R. W., et al. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences, 106(4), 1279–1284.

    Article  CAS  Google Scholar 

  • Williamson, P. (2007). Are anticorrelated networks in the brain relevant to schizophrenia? Schizophrenia Bulletin, 33(4), 994–1003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wotruba, D., Michels, L., Buechler, R., Metzler, S., Theodoridou, A., Gerstenberg, M., et al. (2013). Aberrant coupling within and across the default mode, task-positive, and salience network in subjects at risk for psychosis. Schizophrenia Bulletin, 40, 1095–1104.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (61403062, 61433014 to J.S.), China Postdoctoral Science Foundation (2015M580786 to J.S., 2014M552344, 2015T80973 to Q.Y.), Science-Technology Foundation for Young Scientist of SiChuan Province (2016JQ0007 to J.S.) and the German Federal Ministry of Education and Research (BMBF 01EV0710 to A.M.W., BMBF 01ER0803 to C.S.)

Author information

Authors and Affiliations

Authors

Contributions

JS and CS designed the study; CM, MT, AM, MS and DS recruited participants and acquired data; JB and HF acquired data; JS, QY, GL, CL, DY and LG analysed data; CZ, VR, AW and CS interpreted data; JS and CS drafted the article; all authors critically revised and approved the final version of the article.

Corresponding author

Correspondence to Christian Sorg.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., Meng, C., Tahmasian, M. et al. Common and distinct changes of default mode and salience network in schizophrenia and major depression. Brain Imaging and Behavior 12, 1708–1719 (2018). https://doi.org/10.1007/s11682-018-9838-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-9838-8

Keywords

Navigation