Diagnostic and prognostic value of amyloid PET textural and shape features: comparison with classical semi-quantitative rating in 760 patients from the ADNI-2 database

  • Fayçal Ben Bouallègue
  • Fabien Vauchot
  • Denis Mariano-Goulart
  • Pierre Payoux


We evaluated the performance of amyloid PET textural and shape features in discriminating normal and Alzheimer’s disease (AD) subjects, and in predicting conversion to AD in subjects with mild cognitive impairment (MCI) or significant memory concern (SMC). Subjects from the Alzheimer’s Disease Neuroimaging Initiative with available baseline 18F-florbetapir and T1-MRI scans were included. The cross-sectional cohort consisted of 181 controls and 148 AD subjects. The longitudinal cohort consisted of 431 SMC/MCI subjects, 85 of whom converted to AD during follow-up. PET images were normalized to MNI space and post-processed using in-house software. Relative retention indices (SUVr) were computed with respect to pontine, cerebellar, and composite reference regions. Several textural and shape features were extracted then combined using a support vector machine (SVM) to build a predictive model of AD conversion. Diagnostic and prognostic performance was evaluated using ROC analysis and survival analysis with the Cox proportional hazard model. The three SUVr and all the tested features effectively discriminated AD subjects in cross-sectional analysis (all p < 0.001). In longitudinal analysis, the variables with the highest prognostic value were composite SUVr (AUC 0.86; accuracy 81%), skewness (0.87; 83%), local minima (0.85; 79%), Geary’s index (0.86; 81%), gradient norm maximal argument (0.83; 82%), and the SVM model (0.91; 86%). The adjusted hazard ratio for AD conversion was 5.5 for the SVM model, compared with 4.0, 2.6, and 3.8 for cerebellar, pontine and composite SUVr (all p < 0.001), indicating that appropriate amyloid textural and shape features predict conversion to AD with at least as good accuracy as classical SUVr.


Alzheimer’s disease MCI Amyloid PET SUVr Texture ADNI 



Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health ( The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Data used in preparation of this paper were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database ( As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this paper. A complete listing of ADNI investigators can be found at

Compliance with ethical standards

Conflict of interest

the authors have no conflict of interest to disclose.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2018_9833_MOESM1_ESM.tif (115 kb)
Supplementary material 1 (TIF 114 KB)


  1. Akamatsu, G., Ikari, Y., Ohnishi, A., Nishida, H., Aita, K., Sasaki, M., Yamamoto, Y., Sasaki, M., & Senda, M. (2016). Automated PET-only quantification of amyloid deposition with adaptive template and empirically pre-defined ROI. Physics in Medicine and Biology, 61, 5768–5780.CrossRefPubMedGoogle Scholar
  2. Apostolova, I., Ego, K., Steffen, I. G., Buchert, R., Wertzel, H., Achenbach, H. J., Riedel, S., Schreiber, J., Schultz, M., Furth, C., Derlin, T., Amthauer, H., Hofheinz, F., & Kalinski, T. (2016). The asphericity of the metabolic tumour volume in NSCLC: correlation with histopathology and molecular markers. European Journal of Nuclear Medicine and Molecular Imaging, 43, 2360–2373.CrossRefPubMedGoogle Scholar
  3. Ben Bouallègue, F., Al Tabaa, Y., Kafrouni, M., Cartron, G., Vauchot, F., & Mariano-Goulart, D. (2017): Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas. Med Phys [Epub ahead of print].Google Scholar
  4. Ben Bouallègue, F., Mariano-Goulart, D., & Payoux, P. Alzheimer’s Disease Neuroimaging Initiative (2017): Comparison of CSF markers and semi-quantitative amyloid PET in Alzheimer’s disease diagnosis and in cognitive impairment prognosis using the ADNI-2 database. Alzheimer’s Research & Therapy 9(1):32.CrossRefGoogle Scholar
  5. Boccardi, M., Altomare, D., Ferrari, C., Festari, C., Guerra, U. P., Paghera, B., Pizzocaro, C., Lussignoli, G., Geroldi, C., Zanetti, O., Cotelli, M. S., Turla, M., Borroni, B., Rozzini, L., Mirabile, D., Defanti, C., Gennuso, M., Prelle, A., Gentile, S., Morandi, A., Vollaro, S., Volta, G. D., Bianchetti, A., Conti, M. Z., Cappuccio, M., Carbone, P., Bellandi, D., Abruzzi, L., Bettoni, L., Villani, D., Raimondi, M. C., Lanari, A., Ciccone, A., Facchi, E., Di Fazio, I., Rozzini, R., Boffelli, S., Manzoni, L., Salvi, G. P., Cavaliere, S., Belotti, G., Avanzi, S., Pasqualetti, P., Muscio, C., Padovani, A., & Frisoni, G. B. Incremental Diagnostic Value of Amyloid PET With [18F]-Florbetapir (INDIA-FBP) Working Group (2016): Assessment of the Incremental Diagnostic Value of Florbetapir F 18 Imaging in Patients With Cognitive Impairment: The Incremental Diagnostic Value of Amyloid PET With [18F]-Florbetapir (INDIA-FBP) Study. JAMA Neurology 73:1417–1424.Google Scholar
  6. Brendel, M., Högenauer, M., Delker, A., Sauerbeck, J., Bartenstein, P., Seibyl, J., & Rominger, A. Alzheimer’s Disease Neuroimaging Initiative (2015): Improved longitudinal [(18)F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. Neuroimage 108:450–459.CrossRefPubMedGoogle Scholar
  7. Buvat, I., Orlhac, F., & Soussan, M. (2015). Tumor Texture Analysis in PET: Where Do We Stand? Nuclear Medicine, 56, 1642–1644.CrossRefGoogle Scholar
  8. Chen, K., Roontiva, A., Thiyyagura, P., Lee, W., Liu, X., Ayutyanont, N., Protas, H., Luo, J. L., Bauer, R., Reschke, C., Bandy, D., Koeppe, R. A., Fleisher, A. S., Caselli, R. J., Landau, S., Jagust, W. J., Weiner, M. W., & Reiman, E. M. Alzheimer’s Disease Neuroimaging Initiative (2015): Improved power for characterizing longitudinal amyloid-β PET changes and evaluating amyloid-modifying treatments with a cerebral white matter reference region. Journal of Nuclear Medicine 56:560–566.CrossRefPubMedGoogle Scholar
  9. Chicklore, S., Goh, V., Siddique, M., Roy, A., Marsden, P. K., & Cook, G. J. R. (2013). Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. European Journal of Nuclear Medicine and Molecular Imaging, 40, 133–140.CrossRefPubMedGoogle Scholar
  10. Chincarini, A., Sensi, F., Rei, L., Bossert, I., Morbelli, S., Guerra, U. P., Frisoni, G., Padovani, A., & Nobili, F. Alzheimer’s Disease Neuroimaging Initiative (2016): Standardized Uptake Value Ratio-Independent Evaluation of Brain Amyloidosis. Journal of Alzheimer’s Disease 54:1437–1457.CrossRefPubMedGoogle Scholar
  11. Clark, C. M., Pontecorvo, M. J., Beach, T. G., Bedell, B. J., Coleman, R. E., Doraiswamy, P. M., Fleisher, A. S., Reiman, E. M., Sabbagh, M. N., Sadowsky, C. H., Schneider, J. A., Arora, A., Carpenter, A. P., Flitter, M. L., Joshi, A. D., Krautkramer, M. J., Lu, M., Mintun, M. A., & Skovronsky, D. M. AV-45-A16 Study Group (2012): Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol 11:669–678.CrossRefPubMedGoogle Scholar
  12. Doraiswamy, P. M., Sperling, R. A., Johnson, K., Reiman, E. M., Wong, T. Z., Sabbagh, M. N., Sadowsky, C. H., Fleisher, A. S., Carpenter, A., Joshi, A. D., Lu, M., Grundman, M., Mintun, M. A., Skovronsky, D. M., & Pontecorvo, M. J. AV45-A11 Study Group, AV45-A11 Study Group (2014): Florbetapir F 18 amyloid PET and 36-month cognitive decline: a prospective multicenter study. Molecular Psychiatry 19:1044–1051.Google Scholar
  13. Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., Meguro, K., O’brien, J., Pasquier, F., Robert, P., Rossor, M., Salloway, S., Stern, Y., Visser, P. J., & Scheltens, P. (2007). Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurology, 6, 734–746.CrossRefPubMedGoogle Scholar
  14. Dukart, J., Mueller, K., Barthel, H., Villringer, A., Sabri, O., & Schroeter, M. L. Alzheimer’s Disease Neuroimaging Initiative (2013): Meta-analysis based SVM classification enables accurate detection of Alzheimer’s disease across different clinical centers using FDG-PET and MRI. Psychiatry Research 212:230–236.CrossRefPubMedGoogle Scholar
  15. El Naqa, I., Grigsby, P., Apte, A., Kidd, E., Donnelly, E., Khullar, D., Chaudhari, S., Yang, D., Schmitt, M., Laforest, R., Thorstad, W., & Deasy, J. O. (2009). Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognition, 42, 1162–1171.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ellendt, S., Voß, B., Kohn, N., Wagels, L., Goerlich, K., Drexler, E., Schneider, F., & Habel, U. (2016): Predicting stability of Mild Cognitive Impairment (MCI): findings of a community based sample. Curr Alzheimer Res.Google Scholar
  17. Falconer, K. 1990. Fractal geometry: mathematical foundations and applications. John Wiley.Google Scholar
  18. Goh, V., Sanghera, B., Wellsted, D. M., Sundin, J., & Halligan, S. (2009). Assessment of the spatial pattern of colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis. European Radiology, 19, 1358–1365.CrossRefPubMedGoogle Scholar
  19. Gonzalez-Escamilla, G., Lange, C., Teipel, S., Buchert, R., & Grothe, M. J. Alzheimer’s Disease Neuroimaging Initiative (2017): PETPVE12: an SPM toolbox for Partial Volume Effects correction in brain PET - Application to amyloid imaging with AV45-PET. Neuroimage 147:669–677.CrossRefPubMedGoogle Scholar
  20. Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3, 610–621.CrossRefGoogle Scholar
  21. Hayano, K., Lee, S. H., Yoshida, H., Zhu, A. X., & Sahani, D. V. (2014). Fractal analysis of CT perfusion images for evaluation of antiangiogenic treatment and survival in hepatocellular carcinoma. Academic Radiology, 21, 654–660.CrossRefPubMedGoogle Scholar
  22. Hsiao, I. T., Huang, C. C., Hsieh, C. J., Wey, S. P., Kung, M. P., Yen, T. C., & Lin, K. J. (2013). Perfusion-like template and standardized normalization-based brain image analysis using 18F-florbetapir (AV-45/Amyvid) PET. European Journal of Nuclear Medicine and Molecular Imaging, 40, 908–920.CrossRefPubMedGoogle Scholar
  23. Jack, C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., Petersen, R. C., & Trojanowski, J. Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9, 119–128.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Joshi, A., Koeppe, R. A., & Fessler, J. A. (2009). Reducing between scanner differences in multi-center PET studies. Neuroimage, 46, 154–159.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Joshi, A. D., Pontecorvo, M. J., Clark, C. M., Carpenter, A. P., Jennings, D. L., Sadowsky, C. H., Adler, L. P., Kovnat, K. D., Seibyl, J. P., Arora, A., Saha, K., Burns, J. D., Lowrey, M. J., Mintun, M. A., & Skovronsky, D. M. Florbetapir F 18 Study Investigators (2012): Performance characteristics of amyloid PET with florbetapir F 18 in patients with alzheimer’s disease and cognitively normal subjects. Journal of Nuclear Medicine 53:378–384.CrossRefPubMedGoogle Scholar
  26. Joshi, A. D., Pontecorvo, M. J., Lu, M., Skovronsky, D. M., Mintun, M. A., & Devous, M. D. (2015). A Semiautomated Method for Quantification of F 18 Florbetapir PET Images. Journal of Nuclear Medicine, 56, 1736–1741.CrossRefPubMedGoogle Scholar
  27. Klunk, W. E., Koeppe, R. A., Price, J. C., Benzinger, T. L., Devous, M. D., Jagust, W. J., Johnson, K. A., Mathis, C. A., Minhas, D., Pontecorvo, M. J., Rowe, C. C., Skovronsky, D. M., & Mintun, M. A. (2015). The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement, 11, 1-15-4.CrossRefGoogle Scholar
  28. Klyuzhin, I. S., Blinder, S., Mabrouk, R., Rahmim, A., & Sossi, V. (2015): Investigation of texture quantification parameters for neurological PET image analysis. IEEE Nuclear Science Symposium and Medical Imaging Conference.Google Scholar
  29. Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R. G. P. M., Granton, P., Zegers, C. M. L., Gillies, R., Boellard, R., Dekker, A., & Aerts, H. J. W. L. (2012). Radiomics: extracting more information from medical images using advanced feature analysis. European Journal of Cancer, 48, 441–446.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Landau, S. M., Fero, A., Baker, S. L., Koeppe, R., Mintun, M., Chen, K., Reiman, E. M., & Jagust, W. J. (2015). Measurement of longitudinal β-amyloid change with 18F-florbetapir PET and standardized uptake value ratios. Journal of Nuclear Medicine, 56, 567–574.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Landau, S. M., Mintun, M. A., Joshi, A. D., Koeppe, R. A., Petersen, R. C., Aisen, P. S., Weiner, M. W., & Jagust, W. J. Alzheimer’s Disease Neuroimaging Initiative (2012): Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Annals of Neurology 72:578–586.CrossRefPubMedPubMedCentralGoogle Scholar
  32. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34, 939–944.CrossRefPubMedGoogle Scholar
  33. Minoshima, S., Drzezga, A. E., Barthel, H., Bohnen, N., Djekidel, M., Lewis, D. H., Mathis, C. A., McConathy, J., Nordberg, A., Sabri, O., Seibyl, J. P., Stokes, M. K., & Van Laere, K. (2016). SNMMI Procedure Standard/EANM Practice Guideline for Amyloid PET Imaging of the Brain 1.0. Journal of Nuclear Medicine, 57, 1316–1322.CrossRefPubMedGoogle Scholar
  34. Miwa, K., Inubushi, M., Wagatsuma, K., Nagao, M., Murata, T., Koyama, M., Koizumi, M., & Sasaki, M. (2014). FDG uptake heterogeneity evaluated by fractal analysis improves the differential diagnosis of pulmonary nodules. European Journal of Radiology, 83, 715–719.CrossRefPubMedGoogle Scholar
  35. Nemmi, F., Saint-Aubert, L., Adel, D., Salabert, A.-S., Pariente, J., Barbeau, E. J., Payoux, P., & Péran, P. (2014). Insight on AV-45 binding in white and grey matter from histogram analysis: a study on early Alzheimer’s disease patients and healthy subjects. European Journal of Nuclear Medicine and Molecular Imaging, 41, 1408–1418.CrossRefPubMedGoogle Scholar
  36. Ong, K. T., Villemagne, V. L., Bahar-Fuchs, A., Lamb, F., Langdon, N., Catafau, A. M., Stephens, A. W., Seibyl, J., Dinkelborg, L. M., Reininger, C. B., Putz, B., Rohde, B., Masters, C. L., & Rowe, C. C. (2015). Aβ imaging with 18F-florbetaben in prodromal Alzheimer’s disease: a prospective outcome study. Journal of Neurology, Neurosurgery, and Psychiatry, 86, 431–436.CrossRefPubMedGoogle Scholar
  37. Orlhac, F., Thézé, B., Soussan, M., Boisgard, R., & Buvat, I. (2016). Multiscale Texture Analysis: From 18F-FDG PET Images to Histologic Images. Journal of Nuclear Medicine, 57, 1823–1828.CrossRefPubMedGoogle Scholar
  38. Padilla, P., López, M., Górriz, J. M., Ramírez, J., Salas-González, D., & Álvarez, I. Alzheimer’s Disease Neuroimaging Initiative (2012): NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer’s disease. IEEE Transactions on Medical Imaging 31:207–216.CrossRefPubMedGoogle Scholar
  39. Petersen, R. C., Aisen, P., Boeve, B. F., Geda, Y. E., Ivnik, R. J., Knopman, D. S., Mielke, M., Pankratz, V. S., Roberts, R., Rocca, W. A., Weigand, S., Weiner, M., Wiste, H., & Jack, C. R. (2013). Mild cognitive impairment due to Alzheimer disease in the community. Ann Neurol, 74, 199–208.PubMedPubMedCentralGoogle Scholar
  40. Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C., Harvey, D. J., Jack, C. R., Jagust, W. J., Shaw, L. M., Toga, A. W., Trojanowski, J. Q., & Weiner, M. W. (2010). Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology, 74, 201–209.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pontecorvo, M. J., & Mintun, M. A. (2011). PET amyloid imaging as a tool for early diagnosis and identifying patients at risk for progression to Alzheimer’s disease. Alzheimer’s Research & Therapy, 3, 11.CrossRefGoogle Scholar
  42. Rullmann, M., Dukart, J., Hoffmann, K.-T., Luthardt, J., Tiepolt, S., Patt, M., Gertz, H.-J., Schroeter, M. L., Seibyl, J., Schulz-Schaeffer, W. J., Sabri, O., & Barthel, H. (2016). Partial-Volume Effect Correction Improves Quantitative Analysis of 18F-Florbetaben β-Amyloid PET Scans. Journal of Nuclear Medicine, 57, 198–203.CrossRefPubMedGoogle Scholar
  43. Saint-Aubert, L., Nemmi, F., Péran, P., Barbeau, E. J., Payoux, P., Chollet, F., & Pariente, J. (2014). Comparison between PET template-based method and MRI-based method for cortical quantification of florbetapir (AV-45) uptake in vivo. European Journal of Nuclear Medicine and Molecular Imaging, 41, 836–843.CrossRefPubMedGoogle Scholar
  44. Schreiber, S., Landau, S. M., Fero, A., Schreiber, F., & Jagust, W. J. Alzheimer’s Disease Neuroimaging Initiative (2015): Comparison of Visual and Quantitative Florbetapir F 18 Positron Emission Tomography Analysis in Predicting Mild Cognitive Impairment Outcomes. JAMA Neurology 72:1183–1190.CrossRefPubMedGoogle Scholar
  45. Schwarz, C. G., Senjem, M. L., Gunter, J. L., Tosakulwong, N., Weigand, S. D., Kemp, B. J., Spychalla, A. J., Vemuri, P., Petersen, R. C., Lowe, V. J., & Jack, C. R. (2017). Optimizing PiB-PET SUVR change-over-time measurement by a large-scale analysis of longitudinal reliability, plausibility, separability, and correlation with MMSE. Neuroimage, 144, 113–127.CrossRefPubMedGoogle Scholar
  46. Shokouhi, S., Mckay, J. W., Baker, S. L., Kang, H., Brill, A. B., Gwirtsman, H. E., Riddle, W. R., Claassen, D. O., & Rogers, B. P. Alzheimer’s Disease Neuroimaging Initiative (2016): Reference tissue normalization in longitudinal (18)F-florbetapir positron emission tomography of late mild cognitive impairment. Alzheimer’s Research & Therapy 8:2.CrossRefGoogle Scholar
  47. Shokouhi, S., Rogers, B. P., Kang, H., Ding, Z., Claassen, D. O., Mckay, J. W., & Riddle, W. R. Alzheimer’s Disease Neuroimaging Initiative (2015): Modeling clustered activity increase in amyloid-beta positron emission tomographic images with statistical descriptors. Clinical Interventions in Aging 10:759–770.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Smitha, K. A., Gupta, A. K., & Jayasree, R. S. (2015). Fractal analysis: fractal dimension and lacunarity from MR images for differentiating the grades of glioma. Physics in Medicine and Biology, 60, 6937–6947.CrossRefPubMedGoogle Scholar
  49. Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10, 988–999.CrossRefPubMedGoogle Scholar
  50. Westman, E., Muehlboeck, J.-S., & Simmons, A. (2012). Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion. Neuroimage, 62, 229–238.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fayçal Ben Bouallègue
    • 1
    • 2
  • Fabien Vauchot
    • 1
  • Denis Mariano-Goulart
    • 1
    • 3
  • Pierre Payoux
    • 2
    • 4
  1. 1.Nuclear Medicine DepartmentMontpellier University HospitalMontpellierFrance
  2. 2.Nuclear Medicine DepartmentPurpan University HospitalToulouseFrance
  3. 3.PhyMedExp, INSERM – CNRS, Montpellier UniversityMontpellierFrance
  4. 4.ToNIC, Toulouse NeuroImaging CenterUniversité de Toulouse, Inserm, UPSToulouseFrance

Personalised recommendations