Skip to main content

Advertisement

Log in

Diagnostic and prognostic value of amyloid PET textural and shape features: comparison with classical semi-quantitative rating in 760 patients from the ADNI-2 database

  • ORIGINAL RESEARCH
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

We evaluated the performance of amyloid PET textural and shape features in discriminating normal and Alzheimer’s disease (AD) subjects, and in predicting conversion to AD in subjects with mild cognitive impairment (MCI) or significant memory concern (SMC). Subjects from the Alzheimer’s Disease Neuroimaging Initiative with available baseline 18F-florbetapir and T1-MRI scans were included. The cross-sectional cohort consisted of 181 controls and 148 AD subjects. The longitudinal cohort consisted of 431 SMC/MCI subjects, 85 of whom converted to AD during follow-up. PET images were normalized to MNI space and post-processed using in-house software. Relative retention indices (SUVr) were computed with respect to pontine, cerebellar, and composite reference regions. Several textural and shape features were extracted then combined using a support vector machine (SVM) to build a predictive model of AD conversion. Diagnostic and prognostic performance was evaluated using ROC analysis and survival analysis with the Cox proportional hazard model. The three SUVr and all the tested features effectively discriminated AD subjects in cross-sectional analysis (all p < 0.001). In longitudinal analysis, the variables with the highest prognostic value were composite SUVr (AUC 0.86; accuracy 81%), skewness (0.87; 83%), local minima (0.85; 79%), Geary’s index (0.86; 81%), gradient norm maximal argument (0.83; 82%), and the SVM model (0.91; 86%). The adjusted hazard ratio for AD conversion was 5.5 for the SVM model, compared with 4.0, 2.6, and 3.8 for cerebellar, pontine and composite SUVr (all p < 0.001), indicating that appropriate amyloid textural and shape features predict conversion to AD with at least as good accuracy as classical SUVr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The software is currently under beta-testing for routine exploitation and will soon be made available for download at: http://scinti.edu.umontpellier.fr/recherche/logiciels-a-telecharger/.

References

  • Akamatsu, G., Ikari, Y., Ohnishi, A., Nishida, H., Aita, K., Sasaki, M., Yamamoto, Y., Sasaki, M., & Senda, M. (2016). Automated PET-only quantification of amyloid deposition with adaptive template and empirically pre-defined ROI. Physics in Medicine and Biology, 61, 5768–5780.

    Article  CAS  Google Scholar 

  • Apostolova, I., Ego, K., Steffen, I. G., Buchert, R., Wertzel, H., Achenbach, H. J., Riedel, S., Schreiber, J., Schultz, M., Furth, C., Derlin, T., Amthauer, H., Hofheinz, F., & Kalinski, T. (2016). The asphericity of the metabolic tumour volume in NSCLC: correlation with histopathology and molecular markers. European Journal of Nuclear Medicine and Molecular Imaging, 43, 2360–2373.

    Article  CAS  Google Scholar 

  • Ben Bouallègue, F., Al Tabaa, Y., Kafrouni, M., Cartron, G., Vauchot, F., & Mariano-Goulart, D. (2017): Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas. Med Phys [Epub ahead of print].

  • Ben Bouallègue, F., Mariano-Goulart, D., & Payoux, P. Alzheimer’s Disease Neuroimaging Initiative (2017): Comparison of CSF markers and semi-quantitative amyloid PET in Alzheimer’s disease diagnosis and in cognitive impairment prognosis using the ADNI-2 database. Alzheimer’s Research & Therapy 9(1):32.

    Article  Google Scholar 

  • Boccardi, M., Altomare, D., Ferrari, C., Festari, C., Guerra, U. P., Paghera, B., Pizzocaro, C., Lussignoli, G., Geroldi, C., Zanetti, O., Cotelli, M. S., Turla, M., Borroni, B., Rozzini, L., Mirabile, D., Defanti, C., Gennuso, M., Prelle, A., Gentile, S., Morandi, A., Vollaro, S., Volta, G. D., Bianchetti, A., Conti, M. Z., Cappuccio, M., Carbone, P., Bellandi, D., Abruzzi, L., Bettoni, L., Villani, D., Raimondi, M. C., Lanari, A., Ciccone, A., Facchi, E., Di Fazio, I., Rozzini, R., Boffelli, S., Manzoni, L., Salvi, G. P., Cavaliere, S., Belotti, G., Avanzi, S., Pasqualetti, P., Muscio, C., Padovani, A., & Frisoni, G. B. Incremental Diagnostic Value of Amyloid PET With [18F]-Florbetapir (INDIA-FBP) Working Group (2016): Assessment of the Incremental Diagnostic Value of Florbetapir F 18 Imaging in Patients With Cognitive Impairment: The Incremental Diagnostic Value of Amyloid PET With [18F]-Florbetapir (INDIA-FBP) Study. JAMA Neurology 73:1417–1424.

  • Brendel, M., Högenauer, M., Delker, A., Sauerbeck, J., Bartenstein, P., Seibyl, J., & Rominger, A. Alzheimer’s Disease Neuroimaging Initiative (2015): Improved longitudinal [(18)F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. Neuroimage 108:450–459.

    Article  Google Scholar 

  • Buvat, I., Orlhac, F., & Soussan, M. (2015). Tumor Texture Analysis in PET: Where Do We Stand? Nuclear Medicine, 56, 1642–1644.

    Article  CAS  Google Scholar 

  • Chen, K., Roontiva, A., Thiyyagura, P., Lee, W., Liu, X., Ayutyanont, N., Protas, H., Luo, J. L., Bauer, R., Reschke, C., Bandy, D., Koeppe, R. A., Fleisher, A. S., Caselli, R. J., Landau, S., Jagust, W. J., Weiner, M. W., & Reiman, E. M. Alzheimer’s Disease Neuroimaging Initiative (2015): Improved power for characterizing longitudinal amyloid-β PET changes and evaluating amyloid-modifying treatments with a cerebral white matter reference region. Journal of Nuclear Medicine 56:560–566.

    Article  CAS  Google Scholar 

  • Chicklore, S., Goh, V., Siddique, M., Roy, A., Marsden, P. K., & Cook, G. J. R. (2013). Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. European Journal of Nuclear Medicine and Molecular Imaging, 40, 133–140.

    Article  Google Scholar 

  • Chincarini, A., Sensi, F., Rei, L., Bossert, I., Morbelli, S., Guerra, U. P., Frisoni, G., Padovani, A., & Nobili, F. Alzheimer’s Disease Neuroimaging Initiative (2016): Standardized Uptake Value Ratio-Independent Evaluation of Brain Amyloidosis. Journal of Alzheimer’s Disease 54:1437–1457.

    Article  CAS  Google Scholar 

  • Clark, C. M., Pontecorvo, M. J., Beach, T. G., Bedell, B. J., Coleman, R. E., Doraiswamy, P. M., Fleisher, A. S., Reiman, E. M., Sabbagh, M. N., Sadowsky, C. H., Schneider, J. A., Arora, A., Carpenter, A. P., Flitter, M. L., Joshi, A. D., Krautkramer, M. J., Lu, M., Mintun, M. A., & Skovronsky, D. M. AV-45-A16 Study Group (2012): Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol 11:669–678.

    Article  CAS  Google Scholar 

  • Doraiswamy, P. M., Sperling, R. A., Johnson, K., Reiman, E. M., Wong, T. Z., Sabbagh, M. N., Sadowsky, C. H., Fleisher, A. S., Carpenter, A., Joshi, A. D., Lu, M., Grundman, M., Mintun, M. A., Skovronsky, D. M., & Pontecorvo, M. J. AV45-A11 Study Group, AV45-A11 Study Group (2014): Florbetapir F 18 amyloid PET and 36-month cognitive decline: a prospective multicenter study. Molecular Psychiatry 19:1044–1051.

  • Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., Meguro, K., O’brien, J., Pasquier, F., Robert, P., Rossor, M., Salloway, S., Stern, Y., Visser, P. J., & Scheltens, P. (2007). Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurology, 6, 734–746.

    Article  Google Scholar 

  • Dukart, J., Mueller, K., Barthel, H., Villringer, A., Sabri, O., & Schroeter, M. L. Alzheimer’s Disease Neuroimaging Initiative (2013): Meta-analysis based SVM classification enables accurate detection of Alzheimer’s disease across different clinical centers using FDG-PET and MRI. Psychiatry Research 212:230–236.

    Article  Google Scholar 

  • El Naqa, I., Grigsby, P., Apte, A., Kidd, E., Donnelly, E., Khullar, D., Chaudhari, S., Yang, D., Schmitt, M., Laforest, R., Thorstad, W., & Deasy, J. O. (2009). Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognition, 42, 1162–1171.

    Article  Google Scholar 

  • Ellendt, S., Voß, B., Kohn, N., Wagels, L., Goerlich, K., Drexler, E., Schneider, F., & Habel, U. (2016): Predicting stability of Mild Cognitive Impairment (MCI): findings of a community based sample. Curr Alzheimer Res.

  • Falconer, K. 1990. Fractal geometry: mathematical foundations and applications. John Wiley.

  • Goh, V., Sanghera, B., Wellsted, D. M., Sundin, J., & Halligan, S. (2009). Assessment of the spatial pattern of colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis. European Radiology, 19, 1358–1365.

    Article  Google Scholar 

  • Gonzalez-Escamilla, G., Lange, C., Teipel, S., Buchert, R., & Grothe, M. J. Alzheimer’s Disease Neuroimaging Initiative (2017): PETPVE12: an SPM toolbox for Partial Volume Effects correction in brain PET - Application to amyloid imaging with AV45-PET. Neuroimage 147:669–677.

    Article  Google Scholar 

  • Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3, 610–621.

    Article  Google Scholar 

  • Hayano, K., Lee, S. H., Yoshida, H., Zhu, A. X., & Sahani, D. V. (2014). Fractal analysis of CT perfusion images for evaluation of antiangiogenic treatment and survival in hepatocellular carcinoma. Academic Radiology, 21, 654–660.

    Article  Google Scholar 

  • Hsiao, I. T., Huang, C. C., Hsieh, C. J., Wey, S. P., Kung, M. P., Yen, T. C., & Lin, K. J. (2013). Perfusion-like template and standardized normalization-based brain image analysis using 18F-florbetapir (AV-45/Amyvid) PET. European Journal of Nuclear Medicine and Molecular Imaging, 40, 908–920.

    Article  CAS  Google Scholar 

  • Jack, C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., Petersen, R. C., & Trojanowski, J. Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9, 119–128.

    Article  CAS  Google Scholar 

  • Joshi, A., Koeppe, R. A., & Fessler, J. A. (2009). Reducing between scanner differences in multi-center PET studies. Neuroimage, 46, 154–159.

    Article  Google Scholar 

  • Joshi, A. D., Pontecorvo, M. J., Clark, C. M., Carpenter, A. P., Jennings, D. L., Sadowsky, C. H., Adler, L. P., Kovnat, K. D., Seibyl, J. P., Arora, A., Saha, K., Burns, J. D., Lowrey, M. J., Mintun, M. A., & Skovronsky, D. M. Florbetapir F 18 Study Investigators (2012): Performance characteristics of amyloid PET with florbetapir F 18 in patients with alzheimer’s disease and cognitively normal subjects. Journal of Nuclear Medicine 53:378–384.

    Article  CAS  Google Scholar 

  • Joshi, A. D., Pontecorvo, M. J., Lu, M., Skovronsky, D. M., Mintun, M. A., & Devous, M. D. (2015). A Semiautomated Method for Quantification of F 18 Florbetapir PET Images. Journal of Nuclear Medicine, 56, 1736–1741.

    Article  CAS  Google Scholar 

  • Klunk, W. E., Koeppe, R. A., Price, J. C., Benzinger, T. L., Devous, M. D., Jagust, W. J., Johnson, K. A., Mathis, C. A., Minhas, D., Pontecorvo, M. J., Rowe, C. C., Skovronsky, D. M., & Mintun, M. A. (2015). The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement, 11, 1-15-4.

    Article  Google Scholar 

  • Klyuzhin, I. S., Blinder, S., Mabrouk, R., Rahmim, A., & Sossi, V. (2015): Investigation of texture quantification parameters for neurological PET image analysis. IEEE Nuclear Science Symposium and Medical Imaging Conference.

  • Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R. G. P. M., Granton, P., Zegers, C. M. L., Gillies, R., Boellard, R., Dekker, A., & Aerts, H. J. W. L. (2012). Radiomics: extracting more information from medical images using advanced feature analysis. European Journal of Cancer, 48, 441–446.

    Article  Google Scholar 

  • Landau, S. M., Fero, A., Baker, S. L., Koeppe, R., Mintun, M., Chen, K., Reiman, E. M., & Jagust, W. J. (2015). Measurement of longitudinal β-amyloid change with 18F-florbetapir PET and standardized uptake value ratios. Journal of Nuclear Medicine, 56, 567–574.

    Article  CAS  Google Scholar 

  • Landau, S. M., Mintun, M. A., Joshi, A. D., Koeppe, R. A., Petersen, R. C., Aisen, P. S., Weiner, M. W., & Jagust, W. J. Alzheimer’s Disease Neuroimaging Initiative (2012): Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Annals of Neurology 72:578–586.

    Article  CAS  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34, 939–944.

    Article  CAS  Google Scholar 

  • Minoshima, S., Drzezga, A. E., Barthel, H., Bohnen, N., Djekidel, M., Lewis, D. H., Mathis, C. A., McConathy, J., Nordberg, A., Sabri, O., Seibyl, J. P., Stokes, M. K., & Van Laere, K. (2016). SNMMI Procedure Standard/EANM Practice Guideline for Amyloid PET Imaging of the Brain 1.0. Journal of Nuclear Medicine, 57, 1316–1322.

    Article  CAS  Google Scholar 

  • Miwa, K., Inubushi, M., Wagatsuma, K., Nagao, M., Murata, T., Koyama, M., Koizumi, M., & Sasaki, M. (2014). FDG uptake heterogeneity evaluated by fractal analysis improves the differential diagnosis of pulmonary nodules. European Journal of Radiology, 83, 715–719.

    Article  Google Scholar 

  • Nemmi, F., Saint-Aubert, L., Adel, D., Salabert, A.-S., Pariente, J., Barbeau, E. J., Payoux, P., & Péran, P. (2014). Insight on AV-45 binding in white and grey matter from histogram analysis: a study on early Alzheimer’s disease patients and healthy subjects. European Journal of Nuclear Medicine and Molecular Imaging, 41, 1408–1418.

    Article  CAS  Google Scholar 

  • Ong, K. T., Villemagne, V. L., Bahar-Fuchs, A., Lamb, F., Langdon, N., Catafau, A. M., Stephens, A. W., Seibyl, J., Dinkelborg, L. M., Reininger, C. B., Putz, B., Rohde, B., Masters, C. L., & Rowe, C. C. (2015). Aβ imaging with 18F-florbetaben in prodromal Alzheimer’s disease: a prospective outcome study. Journal of Neurology, Neurosurgery, and Psychiatry, 86, 431–436.

    Article  Google Scholar 

  • Orlhac, F., Thézé, B., Soussan, M., Boisgard, R., & Buvat, I. (2016). Multiscale Texture Analysis: From 18F-FDG PET Images to Histologic Images. Journal of Nuclear Medicine, 57, 1823–1828.

    Article  CAS  Google Scholar 

  • Padilla, P., López, M., Górriz, J. M., Ramírez, J., Salas-González, D., & Álvarez, I. Alzheimer’s Disease Neuroimaging Initiative (2012): NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer’s disease. IEEE Transactions on Medical Imaging 31:207–216.

    Article  CAS  Google Scholar 

  • Petersen, R. C., Aisen, P., Boeve, B. F., Geda, Y. E., Ivnik, R. J., Knopman, D. S., Mielke, M., Pankratz, V. S., Roberts, R., Rocca, W. A., Weigand, S., Weiner, M., Wiste, H., & Jack, C. R. (2013). Mild cognitive impairment due to Alzheimer disease in the community. Ann Neurol, 74, 199–208.

    PubMed  PubMed Central  Google Scholar 

  • Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C., Harvey, D. J., Jack, C. R., Jagust, W. J., Shaw, L. M., Toga, A. W., Trojanowski, J. Q., & Weiner, M. W. (2010). Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology, 74, 201–209.

    Article  Google Scholar 

  • Pontecorvo, M. J., & Mintun, M. A. (2011). PET amyloid imaging as a tool for early diagnosis and identifying patients at risk for progression to Alzheimer’s disease. Alzheimer’s Research & Therapy, 3, 11.

    Article  Google Scholar 

  • Rullmann, M., Dukart, J., Hoffmann, K.-T., Luthardt, J., Tiepolt, S., Patt, M., Gertz, H.-J., Schroeter, M. L., Seibyl, J., Schulz-Schaeffer, W. J., Sabri, O., & Barthel, H. (2016). Partial-Volume Effect Correction Improves Quantitative Analysis of 18F-Florbetaben β-Amyloid PET Scans. Journal of Nuclear Medicine, 57, 198–203.

    Article  CAS  Google Scholar 

  • Saint-Aubert, L., Nemmi, F., Péran, P., Barbeau, E. J., Payoux, P., Chollet, F., & Pariente, J. (2014). Comparison between PET template-based method and MRI-based method for cortical quantification of florbetapir (AV-45) uptake in vivo. European Journal of Nuclear Medicine and Molecular Imaging, 41, 836–843.

    Article  CAS  Google Scholar 

  • Schreiber, S., Landau, S. M., Fero, A., Schreiber, F., & Jagust, W. J. Alzheimer’s Disease Neuroimaging Initiative (2015): Comparison of Visual and Quantitative Florbetapir F 18 Positron Emission Tomography Analysis in Predicting Mild Cognitive Impairment Outcomes. JAMA Neurology 72:1183–1190.

    Article  Google Scholar 

  • Schwarz, C. G., Senjem, M. L., Gunter, J. L., Tosakulwong, N., Weigand, S. D., Kemp, B. J., Spychalla, A. J., Vemuri, P., Petersen, R. C., Lowe, V. J., & Jack, C. R. (2017). Optimizing PiB-PET SUVR change-over-time measurement by a large-scale analysis of longitudinal reliability, plausibility, separability, and correlation with MMSE. Neuroimage, 144, 113–127.

    Article  Google Scholar 

  • Shokouhi, S., Mckay, J. W., Baker, S. L., Kang, H., Brill, A. B., Gwirtsman, H. E., Riddle, W. R., Claassen, D. O., & Rogers, B. P. Alzheimer’s Disease Neuroimaging Initiative (2016): Reference tissue normalization in longitudinal (18)F-florbetapir positron emission tomography of late mild cognitive impairment. Alzheimer’s Research & Therapy 8:2.

    Article  CAS  Google Scholar 

  • Shokouhi, S., Rogers, B. P., Kang, H., Ding, Z., Claassen, D. O., Mckay, J. W., & Riddle, W. R. Alzheimer’s Disease Neuroimaging Initiative (2015): Modeling clustered activity increase in amyloid-beta positron emission tomographic images with statistical descriptors. Clinical Interventions in Aging 10:759–770.

    Article  CAS  Google Scholar 

  • Smitha, K. A., Gupta, A. K., & Jayasree, R. S. (2015). Fractal analysis: fractal dimension and lacunarity from MR images for differentiating the grades of glioma. Physics in Medicine and Biology, 60, 6937–6947.

    Article  CAS  Google Scholar 

  • Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10, 988–999.

    Article  CAS  Google Scholar 

  • Westman, E., Muehlboeck, J.-S., & Simmons, A. (2012). Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion. Neuroimage, 62, 229–238.

    Article  Google Scholar 

Download references

Acknowledgements

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Data used in preparation of this paper were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this paper. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayçal Ben Bouallègue.

Ethics declarations

Conflict of interest

the authors have no conflict of interest to disclose.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 114 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Bouallègue, F., Vauchot, F., Mariano-Goulart, D. et al. Diagnostic and prognostic value of amyloid PET textural and shape features: comparison with classical semi-quantitative rating in 760 patients from the ADNI-2 database. Brain Imaging and Behavior 13, 111–125 (2019). https://doi.org/10.1007/s11682-018-9833-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-9833-0

Keywords

Navigation