Advertisement

Brain Imaging and Behavior

, Volume 12, Issue 3, pp 829–836 | Cite as

Sexually divergent effect of COMT Val/met genotype on subcortical volumes in schizophrenia

  • Irene Bollettini
  • Marco Spangaro
  • Sara Poletti
  • Cristina Lorenzi
  • Adele Pirovano
  • Benedetta Vai
  • Enrico Smeraldi
  • Roberto Cavallaro
  • Francesco Benedetti
Original Research

Abstract

Structural and functional alterations of subcortical areas have been observed in schizophrenia. COMT Val108/158Met has been associated with schizophrenia and implicated in different cognitive and neurofunctional alterations. Recent studies suggested that COMT genotype influences neuronal growth. Genetic variations in COMT were associated with sexually dimorphic effects on enzymatic activity, brain anatomy and behavior suggesting that gender might be crucial in interpreting COMT-dependent effects. Based on these data, we investigated possible effects of the interaction between COMT Val108/158Met genotype and gender on subcortical volumes among 79 patients with schizophrenia. All patients were genotyped for COMT Val108/158Met polymorphism and underwent 3 T–MRI. Volumetric segmentation of subcortical structures was performed with Freesurfer 5.3. The general linear model yielded no significant effect of COMT genotype alone, thus revealing a significant interaction of gender and COMT gene on subcortical volumes. The overall significance of the interaction was driven by significant effects in the right caudate, and bilaterally in putamen, pallidum, and nucleus accumbens. Post-hoc analyses showed that female Met/Met patients had smaller volumes, whereas male subjects homozygous for the Met allele showed higher or not different subcortical volumes compared to the other groups. This study reports a sexually divergent effect of COMT polymorphism on subcortical structures in schizophrenia. These results support the hypothesis of a sexually dimorphic effect of COMT genetic variations on brain morphology.

Keywords

Schizophrenia COMT Dopamine Genotype/gender interaction Subcortical volumes Negative symptoms 

Notes

Compliance with ethical standards

Conflict of interest

Irene Bollettini declares that she has no conflict of interest. Marco Spangaro declares that he has no conflict of interest. Sara Poletti declares that/she has no conflict of interest. Cristina Lorenzi declares that she has no conflict of interest. Adele Pirovano declares that she has no conflict of interest. Benedetta Vai declares that she has no conflict of interest. Enrico Smeraldi declares that he has no conflict of interest. Robero Cavallaro declares that he has no conflict of interest. Francesco Benedetti declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Adolphs, R. (2002). Neural systems for recognizing emotion. Curr Opin Neurobiol, 12(2), 169-177. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12015233.
  2. Akil, M., Kolachana, B. S., Rothmond, D. A., Hyde, T. M., Weinberger, D. R., & Kleinman, J. E. (2003). Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. The Journal of Neuroscience, 23(6), 2008–2013.CrossRefPubMedGoogle Scholar
  3. Becker, J. B. (1999). Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacology, Biochemistry, and Behavior, 64(4), 803–812.CrossRefPubMedGoogle Scholar
  4. Bhide, P. G. (2009). Dopamine, cocaine and the development of cerebral cortical cytoarchitecture: A review of current concepts. Seminars in Cell & Developmental Biology, 20(4), 395–402.CrossRefGoogle Scholar
  5. Bora, E., Fornito, A., Radua, J., Walterfang, M., Seal, M., Wood, S. J., et al. (2011). Neuroanatomical abnormalities in schizophrenia: A multimodal voxelwise meta-analysis and meta-regression analysis. Schizophrenia Research, 127(1–3), 46–57. doi: 10.1016/j.schres.2010.12.020.CrossRefPubMedGoogle Scholar
  6. Brisch, R., Saniotis, A., Wolf, R., Bielau, H., Bernstein, H. G., Steiner, J., et al. (2014). The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue. Frontiers in Psychiatry, 5, 47. doi: 10.3389/fpsyt.2014.00047.PubMedPubMedCentralGoogle Scholar
  7. Chen, Chunhui, Chen, Chuansheng, Moyzis, Robert, Dong, Qi, He, Qinghua, Zhu, Bi, … Lessard, Jared. (2011). Sex modulates the associations between the COMT gene and personality traits. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 36(8), 1593–1598. Retrieved from <Go to ISI>://MEDLINE:21471954.Google Scholar
  8. Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., et al. (2001). Effect of COMT Val108/158 met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98(12), 6917–6922.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ehrlich, Stefan, Morrow, Eric M., Roffman, Joshua L., Wallace, Stuart R., Naylor, Melissa, Bockholt, H. Jeremy, … Holt, Daphne J. (2010). The COMT Val108/158Met polymorphism and medial temporal lobe volumetry in patients with schizophrenia and healthy adults. NeuroImage, 53(3), 992–1000. Retrieved from <Go to ISI>://MEDLINE:20026221.Google Scholar
  10. Ehrlich, S., Yendiki, A., Greve, D. N., Manoach, D. S., Ho, B. C., White, T., et al. (2012). Striatal function in relation to negative symptoms in schizophrenia. Psychological Medicine, 42(2), 267–282.CrossRefPubMedGoogle Scholar
  11. Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20(1), 70–80. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11293693
  12. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355 Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11832223.CrossRefPubMedGoogle Scholar
  13. Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Segonne, F., Quinn, B. T., & Dale, A. M. (2004). Sequence-independent segmentation of magnetic resonance images. NeuroImage, 23(Suppl 1), S69–S84 Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15501102.CrossRefPubMedGoogle Scholar
  14. Franke, B., Stein, J. L., Ripke, S., Anttila, V., Hibar, D. P., van Hulzen, K. J., et al. (2016). Genetic influences on schizophrenia and subcortical brain volumes: Large-scale proof of concept. Nature Neuroscience, 19(3), 420–431. doi: 10.1038/nn.4228nn.4228.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gardner, D. M., Murphy, A. L., O'Donnell, H., Centorrino, F., & Baldessarini, R. J. (2010). International consensus study of antipsychotic dosing. The American Journal of Psychiatry, 167(6), 686–693. doi: 10.1176/appi.ajp.2009.09060802.CrossRefPubMedGoogle Scholar
  16. Gonzalez-Castro, T. B., Hernandez-Diaz, Y., Juarez-Rojop, I. E., Lopez-Narvaez, M. L., Tovilla-Zarate, C. A., & Fresan, A. (2016). The role of a catechol-O-methyltransferase (COMT) Val158Met genetic polymorphism in schizophrenia: A systematic review and updated meta-analysis on 32, 816 subjects. Neuromolecular Medicine. doi: 10.1007/s12017-016-8392-z.
  17. Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., et al. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer. NeuroImage, 32(1), 180–194 Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16651008.CrossRefPubMedGoogle Scholar
  18. Harrison, Paul J., & Tunbridge, Elizabeth M. (2008). Catechol-O-methyltransferase (COMT): a gene contributing to sex differences in brain function, and to sexual dimorphism in the predisposition to psychiatric disorders. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 33(13), 3037–3045. Retrieved from <Go to ISI>://MEDLINE:17805313.Google Scholar
  19. Ho, B. C., Wassink, T. H., O'Leary, D. S., Sheffield, V. C., & Andreasen, N. C. (2005). Catechol-O-methyl transferase Val158Met gene polymorphism in schizophrenia: Working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Molecular Psychiatry, 10(3), 229–287-298. doi: 10.1038/sj.mp.4001616.CrossRefPubMedGoogle Scholar
  20. Honea, R., Verchinski, B. A., Pezawas, L., Kolachana, B. S., Callicott, J. H., Mattay, V. S., et al. (2009). Impact of interacting functional variants in COMT on regional gray matter volume in human brain. NeuroImage, 45(1), 44–51.CrossRefPubMedGoogle Scholar
  21. Hutcheson, Nathan L., Clark, David G., Bolding, Mark S., White, David M., & Lahti, Adrienne C. (2014). Basal ganglia volume in unmedicated patients with schizophrenia is associated with treatment response to antipsychotic medication. Psychiatry Research, 221(1), 6–12. Retrieved from <Go to ISI>://MEDLINE:24210948.Google Scholar
  22. Jacobs, E., & D'Esposito, M. (2011). Estrogen shapes dopamine-dependent cognitive processes: Implications for women's health. The Journal of Neuroscience, 31(14), 5286–5293.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R., et al. (2006). Reliability in multi-site structural MRI studies: Effects of gradient non-linearity correction on phantom and human data. NeuroImage, 30(2), 436–443 Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16300968.CrossRefPubMedGoogle Scholar
  24. Kay, S. R., & Opler, L. A. (1987). The positive-negative dimension in schizophrenia: Its validity and significance. Psychiatric Developments, 5(2), 79–103 Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2888108.PubMedGoogle Scholar
  25. Kritzer, M. F., & Creutz, L. M. (2008). Region and sex differences in constituent dopamine neurons and immunoreactivity for intracellular estrogen and androgen receptors in mesocortical projections in rats. The Journal of Neuroscience, 28(38), 9525–9535.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lachman, H. M., Papolos, D. F., Saito, T., Yu, Y. M., Szumlanski, C. L., & Weinshilboum, R. M. (1996). Human catechol-O-methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics, 6(3), 243–250.CrossRefPubMedGoogle Scholar
  27. Li, Ming, Huang, Liang, Wang, Jinkai, Su, Bing, & Luo, Xiong-Jian. (2016). No association between schizophrenia susceptibility variants and macroscopic structural brain volume variation in healthy subjects. American journal of medical genetics Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics, 171(2), 160–168. Retrieved from <Go to ISI>://MEDLINE:26437209.Google Scholar
  28. McCulloch, C. E., Searle, S. R., & Neuhaus, J. M. (2008). Generalized, linear, and mixed models (Second ed.). Hoboken: Wiley.Google Scholar
  29. McDermott, C. M., Liu, D., Ade, C., & Schrader, L. A. (2015). Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice. Neurobiology of Learning and Memory, 118, 167–177.CrossRefPubMedGoogle Scholar
  30. Okada, N., Fukunaga, M., Yamashita, F., Koshiyama, D., Yamamori, H., Ohi, K., et al. (2016). Abnormal asymmetries in subcortical brain volume in schizophrenia. Molecular Psychiatry. doi: 10.1038/mp.2015.209.
  31. Okazawa, H., Murata, M., Watanabe, M., Kamei, M., & Kanazawa, I. (1992). Dopaminergic stimulation up-regulates the in vivo expression of brain-derived neurotrophic factor (BDNF) in the striatum. FEBS Letters, 313(2), 138–142.CrossRefPubMedGoogle Scholar
  32. Papaleo, F., Erickson, L., Liu, G., Chen, J., & Weinberger, D. R. (2012). Effects of sex and COMT genotype on environmentally modulated cognitive control in mice. Proceedings of the National Academy of Sciences of the United States of America, 109(49), 20160–20165. doi: 10.1073/pnas.1214397109.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Papaleo, F., Sannino, S., Piras, F., & Spalletta, G. (2015). Sex-dichotomous effects of functional COMT genetic variations on cognitive functions disappear after menopause in both health and schizophrenia. European Neuropsychopharmacology, 25(12), 2349–2363.CrossRefPubMedGoogle Scholar
  34. Poletti, S., Mazza, E., Bollettini, I., Falini, A., Smeraldi, E., Cavallaro, R., & Benedetti, F. (2016). The COMT Val158Met polymorphism moderates the association between cognitive functions and white matter microstructure in schizophrenia. Psychiatric Genetics. doi: 10.1097/YPG.0000000000000130.
  35. Reuter, M., Rosas, H. D., & Fischl, B. (2010). Highly accurate inverse consistent registration: A robust approach. NeuroImage, 53(4), 1181–1196. doi: 10.1016/j.neuroimage.2010.07.020.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rimol, L. M., Hartberg, C. B., Nesvag, R., Fennema-Notestine, C., Hagler Jr., D. J., Pung, C. J., et al. (2010). Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biological Psychiatry, 68(1), 41–50. doi: 10.1016/j.biopsych.2010.03.036.CrossRefPubMedGoogle Scholar
  37. Sannino, S., Gozzi, A., Cerasa, A., Piras, F., Scheggia, D., Manago, F., et al. (2015). COMT genetic reduction produces sexually divergent effects on cortical anatomy and working memory in mice and humans. Cerebral Cortex, 25(9), 2529–2541.CrossRefPubMedGoogle Scholar
  38. Segonne, F., Pacheco, J., & Fischl, B. (2007). Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Transactions on Medical Imaging, 26(4), 518–529 Retrieved from www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17427739.CrossRefPubMedGoogle Scholar
  39. Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97 Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9617910.CrossRefPubMedGoogle Scholar
  40. Slifstein, M., van de Giessen, E., Van Snellenberg, J., Thompson, J. L., Narendran, R., Gil, R., et al. (2015). Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: A positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiatry, 72(4), 316–324. doi: 10.1001/jamapsychiatry.2014.2414.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Timm, N., & Kim, K. (2006). Univariate and multivariate general linear models: Theory and applications with SAS (Second ed.). Berlin: Springer.Google Scholar
  42. Tunbridge, E. M., Harrison, P. J., & Weinberger, D. R. (2006). Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biological Psychiatry, 60(2), 141–151. doi: 10.1016/j.biopsych.2005.10.024.CrossRefPubMedGoogle Scholar
  43. van Erp, T. G., Hibar, D. P., Rasmussen, J. M., Glahn, D. C., Pearlson, G. D., Andreassen, O. A., et al. (2016). Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Molecular Psychiatry, 21(4), 585.CrossRefPubMedGoogle Scholar
  44. van Schouwenburg, M., Aarts, E., & Cools, R. (2010a). Dopaminergic modulation of cognitive control: distinct roles for the prefrontal cortex and the basal ganglia. Current Pharmaceutical Design, 16(18), 2026-2032. Retrieved from www.ncbi.nlm.nih.gov/pubmed/20370667Google Scholar
  45. van Schouwenburg, M. R., den Ouden, H. E., & Cools, R. (2010b). The human basal ganglia modulate frontal-posterior connectivity during attention shifting. The Journal of Neuroscience, 30(29), 9910–9918. doi: 10.1523/JNEUROSCI.1111-10.2010.CrossRefPubMedGoogle Scholar
  46. White, T. P., Loth, E., Rubia, K., Krabbendam, L., Whelan, R., Banaschewski, T., et al. (2014). Sex differences in COMT polymorphism effects on prefrontal inhibitory control in adolescence. Neuropsychopharmacology, 39(11), 2560–2569.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Irene Bollettini
    • 1
    • 2
    • 3
  • Marco Spangaro
    • 1
    • 2
    • 3
  • Sara Poletti
    • 1
    • 2
  • Cristina Lorenzi
    • 1
  • Adele Pirovano
    • 1
  • Benedetta Vai
    • 1
    • 2
  • Enrico Smeraldi
    • 1
    • 3
  • Roberto Cavallaro
    • 1
  • Francesco Benedetti
    • 1
    • 2
  1. 1.Department of Clinical NeurosciencesIRCCS San Raffaele Scientific InstituteMilanItaly
  2. 2.C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo)IRCCS San Raffaele Scientific InstituteMilanItaly
  3. 3.Vita-Salute San Raffaele UniversityMilanItaly

Personalised recommendations