Skip to main content

Advertisement

Log in

An evaluation of Z-transform algorithms for identifying subject-specific abnormalities in neuroimaging data

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The need for algorithms that capture subject-specific abnormalities (SSA) in neuroimaging data is increasingly recognized across many neuropsychiatric disorders. However, the effects of initial distributional properties (e.g., normal versus non-normally distributed data), sample size, and typical preprocessing steps (spatial normalization, blurring kernel and minimal cluster requirements) on SSA remain poorly understood. The current study evaluated the performance of several commonly used z-transform algorithms [leave-one-out (LOO); independent sample (IDS); Enhanced Z-score Microstructural Assessment of Pathology (EZ-MAP); distribution-corrected z-scores (DisCo-Z); and robust z-scores (ROB-Z)] for identifying SSA using simulated and diffusion tensor imaging data from healthy controls (N = 50). Results indicated that all methods (LOO, IDS, EZ-MAP and DisCo-Z) with the exception of the ROB-Z eliminated spurious differences that are present across artificially created groups following a standard z-transform. However, LOO and IDS consistently overestimated the true number of extrema (i.e., SSA) across all sample sizes and distributions. The EZ-MAP and DisCo-Z algorithms more accurately estimated extrema across most distributions and sample sizes, with the exception of skewed distributions. DTI results indicated that registration algorithm (linear versus non-linear) and blurring kernel size differentially affected the number of extrema in positive versus negative tails. Increasing the blurring kernel size increased the number of extrema, although this effect was much more prominent when a minimum cluster volume was applied to the data. In summary, current results highlight the need to statistically compare the frequency of SSA in control samples or to develop appropriate confidence intervals for patient data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bigler, E. D., Abildskov, T. J., Petrie, J., Farrer, T. J., Dennis, M., Simic, N., et al. (2013). Heterogeneity of brain lesions in pediatric traumatic brain injury. Neuropsychology, 27(4), 438–451.

    Article  PubMed  Google Scholar 

  • Birmingham, A., Selfors, L. M., Forster, T., Wrobel, D., Kennedy, C. J., Shanks, E., et al. (2009). Statistical methods for analysis of high-throughput RNA interference screens. Nature Methods, 6(8), 569–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth, B. G., Miller, S. P., Brown, C. J., Poskitt, K. J., Chau, V., Grunau, R. E., et al. (2016). STEAM — Statistical template estimation for abnormality mapping: A personalized DTI analysis technique with applications to the screening of preterm infants. NeuroImage, 125, 705–723.

    Article  PubMed  Google Scholar 

  • Bouix, S., Pasternak, O., Rathi, Y., Pelavin, P. E., Zafonte, R., & Shenton, M. E. (2013). Increased gray matter diffusion anisotropy in patients with persistent post-concussive symptoms following mild traumatic brain injury. PloS One, 8(6), e66205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceritoglu, C., Oishi, K., Li, X., Chou, M. C., Younes, L., Albert, M., et al. (2009). Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging. NeuroImage, 47(2), 618–627.

    Article  PubMed  PubMed Central  Google Scholar 

  • Commowick, O. & Stamm, A. (2012). Non-local robust detection of DTI white matter differences with small databases. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 476–484). Berlin Heidelburg: Springer.

  • Commowick, O., Fillard, P., Clatz, O., & Warfield, S. K. (2008). Detection of DTI white matter abnormalities in multiple sclerosis patients. Medical Image Computer Assist Interventions, 11(Pt 1), 975–982.

    Google Scholar 

  • Cox, R., & Glen, D. (2006). Efficient, robust, nonlinear, and guaranteed positive definite diffusion tensor estimation. In Seattle: Proceedings of the International Society for Magnetic Resonance and Medicine, 14th Scientific Meeting.

  • Ding, Z., Gore, J. C., & Anderson, A. W. (2005). Reduction of noise in diffusion tensor images using anisotropic smoothing. Magnetic Resonance in Medicine, 53(2), 485–490.

    Article  PubMed  Google Scholar 

  • Eklund, A., Nichols, T., Andersson, M., & Knutsson, H. (2015). Empirically investigating the statistical validity of SPM, FSL and AFNI for single subject fMRI analysis. In (pp. 1376–1380). IEEE 12th International Symposium on Biomedical Imaging (ISBI).

  • Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of the United States of America, 113(28), 7900–7905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friston, K. J., Holmes, A., Poline, J. B., Price, C. J., & Frith, C. D. (1996). Detecting activations in PET and fMRI: Levels of inference and power. NeuroImage, 4(3 Pt 1), 223–235.

    Article  CAS  PubMed  Google Scholar 

  • Ge, Y., Law, M., & Grossman, R. I. (2005). Applications of diffusion tensor MR imaging in multiple sclerosis. Annals of the New York Academy of Sciences, 1064, 202–219.

    Article  PubMed  Google Scholar 

  • Gebhard, T., Koerte, I., & Bouix, S. (2015). Sample size estimation for outlier detection. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical image computing and computer-assisted intervention - MICCAI 2015 (pp. 743–750). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  • Hayasaka, S., Phan, K. L., Liberzon, I., Worsley, K. J., & Nichols, T. E. (2004). Nonstationary cluster-size inference with random field and permutation methods. NeuroImage, 22(2), 676–687.

    Article  PubMed  Google Scholar 

  • Jones, D. K., & Cercignani, M. (2010). Twenty five pitfalls in the analysis of diffusion MRI data. NMR in Biomedicine, 23(7), 803–820.

    Article  PubMed  Google Scholar 

  • Kim, N., Branch, C. A., Kim, M., & Lipton, M. L. (2013). Whole brain approaches for identification of microstructural abnormalities in individual patients: Comparison of techniques applied to mild traumatic brain injury. PloS One, 8(3), e59382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M. C., et al. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786–802.

    Article  PubMed  PubMed Central  Google Scholar 

  • Landman, B. A., Yang, X., & Kang, H. (2012). Do we really need robust and alternative inference methods for brain MRI? In (pp. 77–93). Springer.

  • Lindquist, M. A. (2008). The statistical analysis of fMRI data. Statistical Science, 23(4), 439–464.

    Article  Google Scholar 

  • Lucchinetti, C., Bruck, W., Parisi, J., Scheithauer, B., Rodriguez, M., & Lassmann, H. (2000). Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Annals of Neurology, 47(6), 707–717.

    Article  CAS  PubMed  Google Scholar 

  • Mac Donald, C. L., Dikranian, K., Bayly, P., Holtzman, D., & Brody, D. (2007). Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. The Journal of Neuroscience, 27(44), 11869–11876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer, A. R., Bedrick, E. J., Ling, J. M., Toulouse, T., & Dodd, A. (2014). Methods for identifying subject-specific abnormalities in neuroimaging data. Human Brain Mapping, 35(11), 5457–5470.

    Article  PubMed  Google Scholar 

  • Mori, S., & van Zijl, P. C. (2007). Human white matter atlas. The American Journal of Psychiatry, 164(7), 1005.

    Article  PubMed  Google Scholar 

  • Nichols, T., & Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging: A comparative review. Statistical Methods in Medical Research, 12(5), 419–446.

    Article  PubMed  Google Scholar 

  • Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15(1), 1–25.

    Article  PubMed  Google Scholar 

  • Parrish, T. B., Gitelman, D. R., LaBar, K. S., & Mesulam, M. M. (2000). Impact of signal-to-noise on functional MRI. Magnetic Resonance in Medicine, 44(6), 925–932.

    Article  CAS  PubMed  Google Scholar 

  • Pasternak, O., Koerte, I. K., Bouix, S., Fredman, E., Sasaki, T., Mayinger, M., et al. (2014). Hockey concussion education project, part 2. Microstructural white matter alterations in acutely concussed ice hockey players: A longitudinal free-water MRI study. Journal of Neurosurgery, 120(4), 873–881.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg, G. A. (2012). Neurological diseases in relation to the blood-brain barrier. Journal of Cerebral Blood Flow and Metabolism, 32(7), 1139–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saad, Z. S., Glen, D. R., Chen, G., Beauchamp, M. S., Desai, R., & Cox, R. W. (2009). A new method for improving functional-to-structural MRI alignment using local Pearson correlation. NeuroImage, 44(3), 839–848.

    Article  PubMed  Google Scholar 

  • Schwarz, C. G., Reid, R. I., Gunter, J. L., Senjem, M. L., Przybelski, S. A., Zuk, S. M., et al. (2014). Improved DTI registration allows voxel-based analysis that outperforms tract-based spatial statistics. NeuroImage, 94, 65–78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaker, M., Erdogmus, D., Dy, J., & Bouix, S. (2017). Subject-specific abnormal region detection in traumatic brain injury using sparse model selection on high dimensional diffusion data. Medical Image Analysis.

  • Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44(1), 83–98.

    Article  PubMed  Google Scholar 

  • Suri, A. K., Fleysher, R., & Lipton, M. L. (2015). Subject based registration for individualized analysis of diffusion tensor MRI. PloS One, 10(11), e0142288.

    Article  PubMed  PubMed Central  Google Scholar 

  • Watts, R., Thomas, A., Filippi, C. G., Nickerson, J. P., & Freeman, K. (2014). Potholes and molehills: Bias in the diagnostic performance of diffusion-tensor imaging in concussion. Radiology, 272(1), 217–223.

    Article  PubMed  PubMed Central  Google Scholar 

  • White, T., Schmidt, M., & Karatekin, C. (2009). White matter ‘potholes’ in early-onset schizophrenia: A new approach to evaluate white matter microstructure using diffusion tensor imaging. Psychiatry Research, 174(2), 110–115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woo, C. W., Krishnan, A., & Wager, T. D. (2014). Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. NeuroImage, 91, 412–419.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (grant numbers 1R01MH101512-01A1 and 1R01NS098494-01A1 to A.M.). The funding agencies had no involvement in the study design, data collection, analyses, writing of the manuscript, or decisions related to submission for publication. We would also like to thank Diana South and Catherine Smith for their assistance with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Mayer.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Human studies and informed consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(DOCX 1217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, A.R., Dodd, A.B., Ling, J.M. et al. An evaluation of Z-transform algorithms for identifying subject-specific abnormalities in neuroimaging data. Brain Imaging and Behavior 12, 437–448 (2018). https://doi.org/10.1007/s11682-017-9702-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-017-9702-2

Keywords

Navigation